Skip to main content

Outlier

Properties

NameTypeDescriptionNotes
idstrThe identity's unique identifier for the outlier record[optional]
identity_idstrThe ID of the identity that is detected as an outlier[optional]
typeEnum [ 'LOW_SIMILARITY', 'STRUCTURAL' ]The type of outlier summary[optional]
first_detection_datedatetimeThe first date the outlier was detected[optional]
latest_detection_datedatetimeThe most recent date the outlier was detected[optional]
ignoredboolFlag whether or not the outlier has been ignored[optional]
attributesobjectObject containing mapped identity attributes[optional]
scorefloatThe outlier score determined by the detection engine ranging from 0..1[optional]
unignore_typeEnum [ 'MANUAL', 'AUTOMATIC' ]Enum value of if the outlier manually or automatically un-ignored. Will be NULL if outlier is not ignored[optional]
unignore_datedatetimeshows date when last time has been unignored outlier[optional]
ignore_datedatetimeshows date when last time has been ignored outlier[optional]
}

Example

from sailpoint.beta.models.outlier import Outlier

outlier = Outlier(
id='5be33d3e-c54d-4ed7-af73-2380543e8283',
identity_id='5be33d3e-c54d-4ed7-af73-2380543e8283',
type='LOW_SIMILARITY',
first_detection_date='2021-05-01T18:40:35.772Z',
latest_detection_date='2021-05-03T18:40:35.772Z',
ignored=False,
attributes={displayName=John Smith, jobTitle=Software Engineer, department=Engineering},
score=0.92,
unignore_type='MANUAL',
unignore_date='2021-06-01T18:40:35.772Z',
ignore_date='2021-06-01T18:40:35.772Z'
)

[Back to top]