
</title>

</title>

IdentityIQ &
BeanShell

Speaker: Christian Cairney
title: Principal Solution Architect
company: SailPoint

Agenda

2© 2023 SailPoint Technologies, Inc. All rights reserved.

• BeanShell Overview

• Best Practice

• Testing

Overview

3© 2023 SailPoint Technologies, Inc. All rights reserved.

BeanShell Scripting language,
based on Java

4© 2023 SailPoint Technologies, Inc. All rights reserved.

BeanShell Overview

BeanShell Overview - Parsing

• Takes source code and interprets it (not a compiler):
• Lexical parsing checks the grammar and builds an Abstract Syntax Tree (AST)
• BeanShell Authors used JavaCC implemented BeanShell parser

• Parsing is time consuming
• Note: Rule Libraries are parsed per rule using them

• IdentityIQ caches the BeanShell instance (in BSFManager)

• The cache lasts a number of execution times across all threads

• Once the cache is destroyed the BeanShell code is re-parsed.

5© 2023 SailPoint Technologies, Inc. All rights reserved.

BeanShell Overview - Execution

• BeanShell heavily uses Java Reflection to execute the AST.

• Nodes contained in the AST tree are iterated over and executed by the BeanShell
interpreter

• Variables and state are persisted in the BeanShell Namespace

6© 2023 SailPoint Technologies, Inc. All rights reserved.

BeanShell Overview - Performance

• Won’t be as fast as Java, but does it matter?
• Performance is still very good.
• Many of the statements in BeanShell code are IO related, e.g. SailPointObject retrieval.

• Watch out for large Rule Libraries

• High iteration Rule’s should be fine tuned for performance

• Complex BeanShell, consider moving to Java
• IdentityIQ Plugins can be used for this
• Hot deployed, just like Rules!
• Classes can be access from BeanShell (if enabled)

7© 2023 SailPoint Technologies, Inc. All rights reserved.

Best Practices

8© 2023 SailPoint Technologies, Inc. All rights reserved.

Best Practices - Logging

• For each Rule, create your own logger:

• “log“ variable use optional, you can use whatever is required: “logger”, “rulelog”,
“liblog”….
• Recommend sticking with the classic “log”.

• Don’t set Log Level in code, allow for external injection to set the log level.
• There are tools and plugins which manage the log level dynamically!

9© 2023 SailPoint Technologies, Inc. All rights reserved.

import org.apache.commons.logging.LogFactory;

log = LogFactory.getLog(“org.rules.my_rule_name”);

Best Practices - Logging

• Remember that expressions are always evaluated before the method is called:

• Even if debug is not enabled, the expression “identity.toXml()” is evaluated and passed
to the debug method anyway.

• The debug method itself evaluates if the data is used.

• Only evaluate if debug is enabled:

10© 2023 SailPoint Technologies, Inc. All rights reserved.

log.debug(identity.toXml());

if (log.isDebugEnabled()) log.debug(identity.toXml());

Best Practices - Logging

• Checking debug is enabled adds noise to the code

• Only have to check if the debug statement is evaluating

• Are both light-weight.. No expressions are being evaluated, no need to check the log
level.

11© 2023 SailPoint Technologies, Inc. All rights reserved.

if (log.isDebugEnabled()) log.debug(identity.toXml());

log.debug(identity);
log.debug(“ Determining some logic here”);

Logging Façade

• You can use the sl4j logging façade which provides a richer API

• We can avoid evaluating an expression by using parameterized logging

• Allow the logger to perform method toString(), don’t call it yourself otherwise…it will be
evaluated!

12© 2023 SailPoint Technologies, Inc. All rights reserved.

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

String test = someMethod(identity);
log = LoggerFactory.getLogger(”org.rules.my.rule_name");
log.debug(”Identity object ‘{}’ has test value {}", identity,

"wobbler”, test);

Best Practices - Query

• When querying for objects in BeanShell (or Java for that matter) be aware of that the
following methods pull all the objects into memory first:
• Iterator it = context.search(Identity.class, qo);
• List list = context.getObjects(Identity.class, qo);

• Projected queries, is a database cursor
• Iterator it = context.search(Identity.class, qo, fieldList);

13© 2023 SailPoint Technologies, Inc. All rights reserved.

Best Practices – Updating Objects

• Lock the object first (Object Util)
https://community.sailpoint.com/t5/Technical-White-Papers/BSDG-20-Locking-
Identity-Objects-for-Modification/ta-p/76456

• If fetching objects, decache when used
• Note: context.decache(object) may not work as you expect!
• Recommend, use context.decache()

14© 2023 SailPoint Technologies, Inc. All rights reserved.

Best Practices – Updating Objects

• Updating objects in IdentityIQ 8.0 and above will close database cursors. A change
from previous releases
https://community.sailpoint.com/t5/IdentityIQ-Articles/IdentityIQ-8-0-and-
commitTransaction-While-Using-an-Iterator/ta-p/143225

• Use these iterators to update Object Datasets
• IncrementalObjectIterator
• IdIterator

• Update the QueryOptions:
QueryOptions qo = new QueryOptions();
qo.setCloneResults(true);

15© 2023 SailPoint Technologies, Inc. All rights reserved.

Best Practices – Hibernate

• Avoid using commitTransaction in Rule Hooks
• Underlying process will also have its session committed.
• No roll back possible after this point.

• decache is your friend, and it’s cheap!

• If the rule is designed to query lots of objects… is that the best design?

• SailPoint Object “.toXml()” method is very expensive, avoid unless necessary.

• Avoid side effects of logging

• Avoid expensive evaluations, if possible short cut them where necessary

16© 2023 SailPoint Technologies, Inc. All rights reserved.

Best Practices – BeanShell ClassLoader

• BeanShell class loader can import Jar files dynamically
• Be careful, performance is not great

• Avoid import package.*, wild card imports take a long time to complete.

• Plugin classes can be made available to the BeanShell class loader!

17© 2023 SailPoint Technologies, Inc. All rights reserved.

Best Practices - Monitor

• Use logs and their time stamps to discern execution times

• Use sailpoint.api.Meter to track execution time
https://community.sailpoint.com/t5/Technical-White-Papers/BSDG-8-Measuring-
the-Performance-of-Bean-Shell-Code/ta-p/73129

Meter.enterByName(”rule-identity-iteration");

…

Meter.exitByName(”rule-identity-iteration");

18© 2023 SailPoint Technologies, Inc. All rights reserved.

https://community.sailpoint.com/t5/Technical-White-Papers/BSDG-8-Measuring-the-Performance-of-Bean-Shell-Code/ta-p/73129
https://community.sailpoint.com/t5/Technical-White-Papers/BSDG-8-Measuring-the-Performance-of-Bean-Shell-Code/ta-p/73129

Testing

19© 2023 SailPoint Technologies, Inc. All rights reserved.

Testing

• iiq console - Test rules in the IdentityIQ instance

• IdentityIQ debug page - Test rules, does not support arguments

• PS JUnit helper – Test rules in Java Code

• DevSAK Plugin - Test rules remotely

20© 2023 SailPoint Technologies, Inc. All rights reserved.

21© 2023 SailPoint Technologies, Inc. All rights reserved.

Thank you!

