

SSF Tools: Generic Importer
User Guide

Generic Importer User Guide Page 2 of 20

Document Revision History

Revision
Date

Written/Edited By Comments

October
2016

Christian Cairney Initial release with SSD v2

February
2017

Paul Wheeler Added IdentityIQ version compatibility information

© Copyright 2017 SailPoint Technologies, Inc., All Rights Reserved.

SailPoint Technologies, Inc. makes no warranty of any kind with regard to this manual, including, but not limited to, the implied

warranties of merchantability and fitness for a particular purpose. SailPoint Technologies shall not be liable for errors

contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

Restricted Rights Legend. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to

another language without the prior written consent of SailPoint Technologies. The information contained in this document is

subject to change without notice.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the

Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and subparagraphs (c)

(1) and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies.

Regulatory/Export Compliance. The export and reexport of this software is controlled for export purposes by the U.S.

Government. By accepting this software and/or documentation, licensee agrees to comply with all U.S. and foreign export laws

and regulations as they relate to software and related documentation. Licensee will not export or reexport outside the United

States software or documentation, whether directly or indirectly, to any Prohibited Party and will not cause, approve or

otherwise intentionally facilitate others in so doing. A Prohibited Party includes: a party in a U.S. embargoed country or country

the United States has named as a supporter of international terrorism; a party involved in proliferation; a party identified by the

U.S. Government as a Denied Party; a party named on the U.S. Government's Entities List; a party prohibited from

participation in export or reexport transactions by a U.S. Government General Order; a party listed by the U.S. Government's

Office of Foreign Assets Control as ineligible to participate in transactions subject to U.S. jurisdiction; or any party that licensee

knows or has reason to know has violated or plans to violate U.S. or foreign export laws or regulations. Licensee shall ensure

that each of its software users complies with U.S. and foreign export laws and regulations as they relate to software and

related documentation.

Trademark Notices. Copyright © 2017 SailPoint Technologies, Inc. All rights reserved. SailPoint, the SailPoint logo, SailPoint

IdentityIQ, and SailPoint Identity Analyzer are trademarks of SailPoint Technologies, Inc. and may not be used without the

prior express written permission of SailPoint Technologies, Inc. All other trademarks shown herein are owned by the

respective companies or persons indicated.

Generic Importer User Guide Page 3 of 20

Table of Contents
Overview .. 4

Installation ... 4

Using the Generic Importer ... 5

1.1 Setting up the Task Definition ... 7

1.1.1 Delimited Text File Iterator.. 9

1.1.2 JDBC Iterator .. 10

1.1.3 Excel Iterator ... 11

1.2 Rapid Schema Transformation ... 12

1.3 Rules ... 14

1.3.1 Init Rule ... 14

1.3.2 Transform rule details ... 14

1.3.3 Process Row rule details .. 15

1.3.4 Finalize rule details ... 15

1.4 Transmogrifier Tool ... 16

1.4.1 Constructors .. 16

1.4.2 mergeObjectWithRow () ... 16

1.4.3 setRemovePrefix(prefix) ... 17

1.4.4 setIncludeAttributes .. 17

1.4.5 setExcludeAttributes ... 17

1.4.6 setForceInProvisioningPlan() ... 18

1.4.7 createAccountProvisoningPlan / createObjectProvisoningPlan 18

1.4.8 ExecuteProvisoningPlan ... 19

2 Examples ... 20

2.1 Template Rules ... 20

Generic Importer User Guide Page 4 of 20

Overview

The Generic Importer is a framework which allows for the rapid development of miscellaneous data
imports into IdentityIQ. The framework abstracts away from the data source so business rules
implemented using the data are source agnostic. The following high level features are available:

• Import data sources from a Delimited Text File, Excel Spreadsheet or a JDBC Database

• Schema manipulation and Rule based Transforms

• Set of Importer tools

The tool is designed to replace boiler plate code commonly found in other importers; some of the
advantages of using the Generic Importer are:

• No need to write iterators, just use a Rule to process a row of data at a time

• Business rules can be used as-is from one data source to another.

• Source feeds no longer need to conform to schema names expected by your import task, rapid
Schema manipulation allows Generic Imports to process the feeds without any changes to
business rules or the source data.

• Enhanced transform helper removes the need of further boiler plate code when populating
objects with row data.

The Generic Importer is compatible with IdentityIQ version 6.3 and later.

Installation

The Generic Importer consists of the following class files:

Filename Description

GenricImportTaskExecutor.java Task Executor used to instantiate the Controller class from
an IdentityIQ Task.

ImporterUtil.java Set of helper functions

Transmogrifier.java Transform class to merge row data with SailPoint Object
classes

Parser.java Parses strings and builds an object hierarchy of the data.

Schema.java Maintains the schema of a given iterator and allows for data
transformations

GenericImportController.java The main Generic Importer Controller class, responsible for
processing the Iterators and applying schema changes etc.

GenericImport.java Interface for the Generic Importer iterators

AbstractGenericImport.java Abstract class based on the Generic Import interface/

ExcelSAXImport.java Excel low memory footprint iterator

JDBCImport.java JDBC Database iterator

TextFileImport.java Delimited file iterator

The configuration files are:

Filename Description

TaskDef-GenericImporter.xml Task Definition for the import

Generic Importer User Guide Page 5 of 20

The following template rule files can be used as they are prepared with the IdentityIQ Deployment
Accelerator in mind:

Filename Description

Template_Init.xml Init, transform, row and finalise rules setup as a template
with additional meta data to enable the IdentityIQ Developer
Accelerator.

Template_Transform.xml

Template_Row.xml

Template_Finalise.xml

These files are included in the SSD and automatically deployed with your project using the SSB.
Follow the SSB instructions to create a build for your environment and deploy the files.

Using the Generic Importer

The Generic Importer iterates through the data feed supplied, allowing for transforms then business
process applied to it. The basic flow is:

• The data feed is opened by the Generic Importer

• If any initialization code is required, this can be placed in the Init Rule

• Any Rapid Schema Transform changes needed are initialized

• Then the data feed is iterated over; for each iteration:
o The Data Row, represented as a Map, is built from the iterator
o Any Rapid Schema Transform configurations are executed and transform the Data Row

Map.
o If further transforms are required, The Data Row Map is presented to the Transform Rule

and returns a transformed version of the Data Row (Map).
o A Data Row Map is then presented to the Row Rule, where the business rules are

contained to process the Data Row Map.

• Run the Finalize Rule (if one exists) once the iterator is exhausted.

The following diagram shows the data flow in the importer:

Generic Importer User Guide Page 6 of 20

Figure 1: GenericImporter overview

To enable the Generic Importer you must first set up a task; this will be discussed in the next section.

Generic Importer User Guide Page 7 of 20

1.1 Setting up the Task Definition

In IdentityIQ, go to the task configuration and select a new task, and select

“Generic Importer” from the drop down. A New Task form will be presented

with several options to complete. The Options are broken down into 4

sections:

• Generic

• JDBC

• File

• Excel

The options with the “Generic:” prefix apply to all iterators, and their options

are:

Name Description

Generic: Import Driver Class

Task argument name:
genericImportDriverClass

Required: The class to use to iterate through the data feed, Supported
classes for the generic import can include:

TextFileImport, JdbcImport and ExcelSaxImport

NB: The importer will initially search the
“sailpoint.services.standard.task.genericImport” name space so any
stock iterator can be referred to with their class name only.

Generic: Group by

Task argument name:
importGroupBy

Optional: “Group By” allows the Controller to group the records by field
name specified in CSV format, e.g:

name, department

NB: The GenericImporter does not have the facility to sort the feed first,
only use the Group By function if the data feed is sort in the order you
wish the data to be grouped.

Generic: MV Field

Task argument name:
importMultiValueFields

Optional: After the “Group By” entry is populated, the “MV Field” is a
CSV format file which allows the fields to be transformed into a list of
values based on the data returned by the “Group By” function.

Generic: Init Rule name

Task argument name:
importInitRule

Optional: A Rule which is run before the iterator is executed.

Generic: Transform Rule
name

Task argument name:
importTransformRule

Optional: A Rule which can transform the row if the source feed cannot
be transformed easily using the Generic: Transform iterators header
function.

Generic: Row Rule name

Task argument name:
importRowRule

Required: Row Rule which is executed for each record in the iterator.

Generic: Finalize Rule name Optional: A finalize Rule which is executed after the iterator has been

Generic Importer User Guide Page 8 of 20

Task argument name:
importFinalizeRule

exhausted.

Generic: Logger to use
instead of default

Task argument name:
importLoggerName

Optional: Custom logger name, to use instead of the
sailpoint.services.standard.task.genericImport.GenericImporterController
logger.

Generic Use log level for
custom logger

Task argument name:
importLoggerLevel

Optional: If a customer logger is specified, the logging level can be
specified here. The logging level can be:

ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE and WARN.

Generic: Transform iterators
header

Task argument name:
importManualHeader

Optional: String command to transform the schema. This is discussed
further in another section.

The setup the different iterators are detailed in the next sections.

Please note that with all iterators, the values will be passed to the GenericImporter as “String”

values and will ignore the data types from the source feed.

Generic Importer User Guide Page 9 of 20

1.1.1 Delimited Text File Iterator

The Delimited Text File Iterator will iterate a CSV Text File. The entry “Generic: Import Driver Class”

should be set to “TextFileImport” to use the settings below.

Name Description

File: File name

Task argument name: text_fileName

Filename of the text file to be iterated over.

File: Delimiter

Task argument name:
text_fileDelimiter

The row delimiter for the file. If none is specified then “,”
is the default.

File: File has a header

Task argument name:
text_hasHeader

Set to “true” if the import file has a header

File: Import remark token

Task argument name:
text_remarkToken

Remark token, will ignore this line if encountered

File: Encoding

Task argument name:
text_fileEncoding

Encoding use to read the file

Notes about this iterator:

• If no header is detected, all column names will be numbers, using a zero-based index

Generic Importer User Guide Page 10 of 20

1.1.2 JDBC Iterator

The JDBC Iterator will iterate a JDBC RecordSet. The entry “Generic: Import Driver Class” should be

set to “JDBCImport” to use the settings below.

Name Description

JDBC: Driver Class

Task argument name:
jdbc_driverClass

JDBC Driver class, such as:
oracle.jdbc.OracleDriver

JDBC: URL

Task argument name: jdbc_url

JDBC URL for the database resource. E.g.
jdbc:oracle:thin:@ldap://database:3389/DB

JDBC: Username

Task argument name: jdbc_user

User name used for authentication for the JDBC
resource

JDBC: Password

Task argument name: jdbc_password

Password used for authentication for the JDBC
resource, this value can be encrypted, e.g.
1:327377w734YQZExYyz==

JDBC: SQL Query

Task argument name: jdbc_sqlQuery

The SQL Query used to iterate through. If using
groupBy generic function, ensure the result set is sorted
by the fields listed in the groupBy entry.

Notes about this iterator:

• Headers will always be detected, based on the schema the JDBC query returns

Generic Importer User Guide Page 11 of 20

1.1.3 Excel Iterator

The Excel Iterator will iterate an Excel Worksheet. The entry “Generic: Import Driver Class” should be

set to “ExcelSAXImporter” to use the settings below

Name Description

Excel: The excel full path and file
name

Task argument name:
excel_filename

The Excel filename

Excel: Does the worksheet have a
header row

Task argument name:
excel_hasHeader

Indicates there is a row of data in the spreadsheet which
indicates the header.

Excel: Sheet name

Task argument name:
excel_sheetName

The Excel worksheet to iterate through

Excel: Header row number

Task argument name:
excel_headerRow

The line number used in Excel for the header.

Notes about this iterator:

• If no header is detected, all column names will be numbers, using a zero-based index

• The Excel spreadsheet must be in MS Office Open XML file format (OOXML), which is usually

represented as an “.xlsx” file.

Generic Importer User Guide Page 12 of 20

1.2 Rapid Schema Transformation

The Rapid Schema Transformation is passed to the Generic Importer via the Task Definition. The

transform is configured in the “Generic: Transform iterators header” (Task argument name:

importManualHeader) and has a command syntax which can augment the way the Data Row Map is

presented.

This value is a CSV format value but each CSV value can be interpreted with different meanings.

The basic syntax is for each item in a CSV list. For each item you can specify:

Column1

Optionally transform the column, to coerce the type:

Column1(Integer)

Column1 string value will now be transformed as an Integer in the Data Row Map.

Optionally transform column to give a new column name:

 Column1=NewColumn1

 Column1 will now be known as NewColumn1 in the Data Row Map.

Optionally transform column to give a new column name and coerce the data type:

 Column1=NewColumn1(Integer)

Column1 will now be known as NewColumn1 and the string value transformed to an Integer in

the Data Row Map

A data type conversion may be more complex so additional information could be required to do the

transform, such as the Date type. The Date transformation needs the date format the value is in before

returning a Java Date object, this is passed as parameters in brackets after the data type is designated:

Column1=NewColumn1(Date(dd-mmm-yyyy))

Column1 will now be known as NewColumn1 and the string value transformed to a Java Date

based on the date format “dd-mmm-yyyy” in the Data Row Map.

A data type conversion is not limited to simple data types; with the Rapid Schema Transform values

can be transformed into any SailPoint IdentityIQ first class object which has a setName(String),

getName(String) method:

Column1=NewColumn1(Identity)

• Column1 will be renamed as NewColumn1

• NewColumn1 will be transformed to the Identity type, and the value of NewColumn1 will

be used to lookup an Identity object of that name.

Generic Importer User Guide Page 13 of 20

• If the Identity object exists, the NewColumn attribute will be an Identity object of that

name

• If the Identity Object does not exist, the NewColumn attribute will be NULL.

The SailPoint IdentityIQ first class object transform has some additional modifiers which can be used

before specifying the object type:

Modifier Description

+ If an object does not exist, then create the object and return that in the Data
Row Map

++ If an object does not exist, then create it AND persist it to the IdentityIQ
Database, then return the Identity in the Data Row Map.

Column1=NewColumn1(+Identity)

• Column1 will be renamed as NewColumn1

• NewColumn1 will be transformed to the Identity type, and the value of NewColumn1 will

be used to lookup an Identity object of that name.

• If the Identity object exists, the NewColumn attribute will be an Identity object of that

name

• If the Identity Object does not exist, a new Identity object will be created and the Identity

object name will be set to the value held in the NewColumn string.

Column1=NewColumn1(++Identity)

• Column1 will be renamed as NewColumn1

• NewColumn1 will be transformed to the Identity type, and the value of NewColumn1 will

be used to lookup an Identity object of that name.

• If the Identity object exists, the NewColumn attribute will be an Identity object of that

name

• If the Identity Object does not exist:

o a new Identity object will be created and the Identity object name will be set to

the value held in the NewColumn string.

o The new Identity Object will be saved back in the IdentityIQ data repository and

the transaction will be committed to make it permanent.

Generic Importer User Guide Page 14 of 20

1.3 Rules

The Generic Importer has four separate rules which can be run, The Init Rule at the start of the import,

Transform Rule and Row Rule while the data is being iterated over and then finally the Finalize Rule.

The diagram below shows the rules and order they are processed.

Figure 2: Rules and order they are processed

1.3.1 Init Rule

The “Init” Rule runs at the start of the import, and only runs once. This Rule is optional, and not

specifying this rule will still allow the import to execute.

Variables instantiated in the rule:

Variable name Description

log Logger for this BeanShell Rule, logger class

context SailPoint context

taskResult sailpoint.object.TaskResult object, from the Task Executor

taskAttributes sailpoint.object.Attributes object, from the Task Executor

Returns nothing.

1.3.2 Transform rule details

The “Transform” Rule is executed for each record being iterated over. This Rule is optional, and not

specifying this rule will still allow the import to execute.

Variables instantiated in the rule:

Variable name Description

log Logger for this BeanShell Rule, logger class

context SailPoint context

taskResult sailpoint.object.TaskResult object, from the Task Executor.

taskAttributes sailpoint.object.Attributes object, from the Task Executor

row A row of data from the input source, represented as a
sailpoint.object.Attributes object

transform A sailpoint.object.Attributes object used to hold the transformed row

Returns:

Generic Importer User Guide Page 15 of 20

Variable name Description

sailpoint.object.Attributes Returns the transformed row of data to be processed by the Row Rule.

1.3.3 Process Row rule details

The “Row” Rule is executed after the Transform Rule, for each record being iterated over. This Rule is

required.

Variables instantiated in the rule:

Variable name Description

log Logger for this BeanShell Rule, logger class

context SailPoint context

taskResult sailpoint.object.TaskResult object, from the Task Executor.

taskAttributes sailpoint.object.Attributes object, from the Task Executor

row A row of data from the input source, represented as a
sailpoint.object.Attributes object

transform A sailpoint.object.Attributes object used to hold the transformed row

Returns Nothing.

1.3.4 Finalize rule details

The “Finalize” Rule runs at the end of the import and only runs one. This Rule is optional, and not

specifying this rule will still allow the import to execute.

Variables instantiated in the rule:

Variable name Description

log Logger for this BeanShell Rule, logger class

context SailPoint context

taskResult sailpoint.object.TaskResult object, from the Task Executor.

taskAttributes sailpoint.object.Attributes object, from the Task Executor

Returns nothing.

Generic Importer User Guide Page 16 of 20

1.4 Transmogrifier Tool

The Transmogrifier tool is a Java class that allows the creation, population or retrieval and update of a

SailPoint Object class by merging the Row Data Map to the object.

The Transmogrifier should use the following imports:

import sailpoint.services.standard.task.genericImport.Transmogrifier;

Details of constructors and useful methods are given below. For full details please see the

Transmogrifier Javadoc in <SSD root>/doc/JavaDoc.

1.4.1 Constructors

The Transmogrifer has a number of constructors to help simply implementation, they are:

• (SailPointContext)

• (SailPointContext , Attributes (Row meta data attribute map),)

• (SailPointContext, Attributes (Row meta data attribute map), SailPointObject)

The SailPointContext is the normal “context” variable you will see in all IdentityIQ Rules. You may omit

the SailPointContext and the class will attempt to discover the current context.

The Attributes map defined as “row” in the Row Rule where the Transmogrifier is expected to be

instantiated.

The SailPointObject is the first class IdentityIQ object to merge Row data with. Please note that the

SailPointObject does not need to be instantiated.

1.4.2 mergeObjectWithRow ()

 Method will attempt to merge the SailPointObject with the row data map.

If the SailPointObject is null, then using the map it will attempt to discover an object’s name. If one is

found, then it will instantiate the object from the IdentityIQ repository instead of creating a new object.

The SailPointObject custom attributes will be queried against the Row Data Map column name, if a

match is found then the SailPointObject’s custom attributes will be populated with the value in the Row

Data Map.

The SailPointObject setter methods will be queried against to try to match the Row Data Map column

names; these names are also transformed to be prefixed with “set” and the first letter of the column

name is upper cased, e.g.

Column-name in the Row Meta Data Map is set to “name”

The mergeObjectWithRow method will perform the following

• Attempt to discover a method called “setName” on the Object being operated on.

Generic Importer User Guide Page 17 of 20

o If the method is found, then the Row Meta Data map’s value is set as a

parameter for that method and then executed.

• If the “setName” method is not found on the Object being operated on, then it will

attempt to find a method called “name”.

o If the method is found, then the Row Meta Data map’s value is set as a

parameter for that method and then executed.

1.4.3 setRemovePrefix(prefix)

This method allows any prefixes to be removed from the column list before it’s executed. The remove

prefix is a csv value so can remove multiple prefixes in one call

E.g.

Column name = identity_name

setRemovePrefix(“identity_”);

Column name will be rendered as “name” in the Transmogrifier.

1.4.4 setIncludeAttributes

Filter the attributes based on an include specification held in a CSV. The set include attribute spec is a

CSV which is in the following format:

columname1,columnname2,columnname3,attributename,location

The csv value can also include wild cards of type “*” and “?” similar to filing system wildcards. The

following will give you the same result of the filter spec above

column*,attributename,location

and

columnname?,attribute*,location

1.4.5 setExcludeAttributes

Filter the attributes based on an include specification held in a CSV. The set exclude attribute spec is a

CSV which is in the following format:

columname1,columnname2,columnname3,attributename,location

The csv value can also include wild cards of type “*” and “?” similar to filing system wildcards. The

following will give you the same result of the filter spec above

column*,attributename,location

and

Generic Importer User Guide Page 18 of 20

columnname?,attribute*,location

1.4.6 setForceInProvisioningPlan()

When calling the createObjectProvisoningPlan or the createAccountProvisioningPlan the method will

filter out row columns based on the application schema. A CSV list of attribute names can be set with

this method to ignore the application schema check and force a row column into the provisioning plan.

This can be useful when attributes are not exposed in the Application schema but are valid in the target

system.

1.4.7 createAccountProvisoningPlan / createObjectProvisoningPlan

These methods required the following augments:

• IdentityIQ Application Name

• Schema name of the object to be managed

• Operation (sailpoint.object.ProvisioningPlan.ObjectOperation)

• Target system’s native identity

The Row Data will be examined and a provisioning plan will be created based on the arguments

supplied.

Please not that included and excluded attributes will be honoured similar to the mergeObjectWithRow

method

If an attribute is to be forced into the plan from the Row map, the setForceInProvisioningPlan value will

be honoured.

Example for group management in an LDAP directory.

The following row data is assumed:

Cn, objectClass, dn, description, uniqueMember, illegalAttribute <CR>

iiqAdmins2,groupOfUniqueNames,cn=iiqAdmins2,ou=groups,ou=system,IIQ Admin group

, "cn=spadmin,dc=sailpoint,dc=com, "Should not see this attribute in the plan") <CR>

Code to merge this row to create an LDAP Group object in a theoretical application called LDAP

Transmogrifier t = new Transmogrifier(context, row);

ProvisioningPlan plan = t.createObjectProvisioningPlan("LDAP", "group",

 ProvisioningPlan.ObjectOperation.Create, (String) row.get("dn"));

Example for account management in an LDAP directory

The following row data is assumed:

Generic Importer User Guide Page 19 of 20

cn, sn, objectClass, dn, mail, description, illegalAttribute <CR>

spadmin, Administrator, {inetOrgPerson, organizationalPerson, person, top},

cn=spadmin,ou=users,ou=system, spadmin@sailpoint.com, This is spadmin's ldap account, Should

not see this attribute in the plan

// This is an additional column, which can be added programmatically

// to the original feed

row.put("password", "Letmein99");

The following code transforms the above row data into an object in the target system

Transmogrifier t = new Transmogrifier(context, row);

// The LDAP application does not have password in the schema, so we can force

// it into the provisioning plan with the next statement

t.setForceInProvisioningPlan("password");

ProvisioningPlan plan = t.createAccountProvisioningPlan("LDAP", "account",

 ProvisioningPlan.ObjectOperation.Create,

 (String) row.get("dn"));

1.4.8 ExecuteProvisoningPlan

The ExecuteProvisioningPlan method will execute the created plan against the target system.

mailto:spadmin@sailpoint.com

Generic Importer User Guide Page 20 of 20

2 Examples

This section discusses the samples which are available with the SSD Distribution.

2.1 Template Rules

The Generic Importer does not have a registered Rule type in IdentityIQ, so to aid development 4

template rules are available; the inputs and their types are described as well as IdentityIQ Deployment

Accelerator mark-ups to help inside the Eclipse IDE.

1. Template_Init.xml The Init Rule template

2. Template_Transform.xml The Transform Row Rule template

3. Template_Row.xml The Row Rule template

4. Template_Finalise.xml The Finalise Rule template

	Overview
	Installation
	Using the Generic Importer
	1.1 Setting up the Task Definition
	1.1.1 Delimited Text File Iterator
	1.1.2 JDBC Iterator
	1.1.3 Excel Iterator

	1.2 Rapid Schema Transformation
	1.3 Rules
	1.3.1 Init Rule
	1.3.2 Transform rule details
	1.3.3 Process Row rule details
	1.3.4 Finalize rule details

	1.4 Transmogrifier Tool
	1.4.1 Constructors
	1.4.2 mergeObjectWithRow ()
	1.4.3 setRemovePrefix(prefix)
	1.4.4 setIncludeAttributes
	1.4.5 setExcludeAttributes
	1.4.6 setForceInProvisioningPlan()
	1.4.7 createAccountProvisoningPlan / createObjectProvisoningPlan
	1.4.8 ExecuteProvisoningPlan

	2 Examples
	2.1 Template Rules

