

Rules in IdentityIQ

IdentityIQ Version: 7.0, 7.1, 7.2

This document describes the usage and writing of rules to implement custom logic in the IdentityIQ product.

The menu navigations changed in version 7.0, so this new document has been created from the old Rules white

paper as of version 7.0. The document content for the rules which exist in all of the 6.x and 7.x IdentityIQ

versions has not changed; only the navigation instructions are different. Some rule types, as noted, only exist in

the newer product versions and are therefore only found in this document version.

Rules in IdentityIQ Page 2 of 170

Document Revision History

Revision Date Written/Edited By Comments

Nov 2016 Jennifer Mitchell Split off from old Rules white paper and updated for 7.0, 7.1;
changed UI navigation instructions to rule editor locations and
added rules for SAP HR and PeopleSoft HRMS
aggregation/provisioning and before/after operation rules for
WebServices connector

Dec 2017 Jennifer Mitchell Edited for 7.2: Added Alert-related rules and made some error
corrections (argument type in WebServiceAfterOperationRule rule,
change to FallbackWorkItemForward rule details because of
change to allowSelfCertification variable (changed in 6.1))
Added previously-missed rules: Report-related rules,
TargetCustomization, RACFPermissionCustomization,
PolicyNotification

© Copyright 2017 SailPoint Technologies, Inc., All Rights Reserved.

SailPoint Technologies, Inc. makes no warranty of any kind with regard to this manual, including, but not limited to, the implied

warranties of merchantability and fitness for a particular purpose. SailPoint Technologies shall not be liable for errors contained herein or

direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Restricted Rights Legend. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another

language without the prior written consent of SailPoint Technologies. The information contained in this document is subject to change

without notice.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in

Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the

Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies.

Regulatory/Export Compliance. The export and reexport of this software is controlled for export purposes by the U.S. Government. By

accepting this software and/or documentation, licensee agrees to comply with all U.S. and foreign export laws and regulations as they

relate to software and related documentation. Licensee will not export or reexport outside the United States software or documentation,

whether directly or indirectly, to any Prohibited Party and will not cause, approve or otherwise intentionally facilitate others in so doing.

A Prohibited Party includes: a party in a U.S. embargoed country or country the United States has named as a supporter of international

terrorism; a party involved in proliferation; a party identified by the U.S. Government as a Denied Party; a party named on the U.S.

Government's Entities List; a party prohibited from participation in export or reexport transactions by a U.S. Government General Order;

a party listed by the U.S. Government's Office of Foreign Assets Control as ineligible to participate in transactions subject to U.S.

jurisdiction; or any party that licensee knows or has reason to know has violated or plans to violate U.S. or foreign export laws or

regulations. Licensee shall ensure that each of its software users complies with U.S. and foreign export laws and regulations as they relate

to software and related documentation.

Trademark Notices. Copyright © 2017 SailPoint Technologies, Inc. All rights reserved. SailPoint, the SailPoint logo, SailPoint IdentityIQ,

and SailPoint Identity Analyzer are trademarks of SailPoint Technologies, Inc. and may not be used without the prior express written

permission of SailPoint Technologies, Inc. All other trademarks shown herein are owned by the respective companies or persons

indicated.

Rules in IdentityIQ Page 3 of 170

Table of Contents
Rules Overview ... 7

Creating Rules... 7

UI Rule Editor.. 7

Importing Rule XML .. 8

Common Rule Arguments .. 9

Custom Log4J Logging in Rules ... 9

Printing the Beanshell Namespace .. 10

Managing Rule Arguments ... 11

Rule Types .. 12

Connector Rules ... 12

PreIterate ... 12

BuildMap .. 15

JDBCBuildMap .. 16

SAPBuildMap .. 18

SAPHRManagerRule ... 19

PeopleSoftHRMSBuildMap ... 21

FileParsingRule ... 23

MergeMaps .. 24

Transformation ... 26

PostIterate .. 28

WebServiceBeforeOperationRule .. 30

WebServiceAfterOperationRule ... 31

RACFPermissionCustomization .. 33

Aggregation/Refresh Rules... 34

ResourceObjectCustomization ... 34

Correlation.. 36

IdentityCreation ... 38

ManagerCorrelation ... 40

ManagedAttributeCustomization / ManagedAttributePromotion.. 42

Refresh ... 44

AccountGroupRefresh/GroupAggregationRefresh .. 45

Rules in IdentityIQ Page 4 of 170

AccountSelector ... 47

Certification Rules .. 49

CertificationExclusion ... 50

CertificationPreDelegation ... 52

Certifier ... 54

CertificationEntityCustomization ... 55

CertificationItemCustomization ... 57

CertificationPhaseChange .. 58

CertificationEntityRefresh .. 61

CertificationEntityCompletion.. 62

CertificationItemCompletion ... 65

CertificationAutomaticClosing ... 66

CertificationSignOffApprover ... 68

IdentityTrigger .. 70

IdentitySelector .. 71

Provisioning Rules .. 73

BeforeProvisioning ... 73

AfterProvisioning .. 74

JDBCProvision ... 76

JDBCOperationProvisioning ... 78

SapHrProvision ... 81

SapHrOperationProvisioning .. 82

PeopleSoftHRMSProvision ... 85

PeopleSoftHRMSOperationProvisioning .. 86

Integration .. 90

Notification/Assignment Rules... 91

EmailRecipient .. 91

Escalation ... 92

Approver ... 95

ApprovalAssignment .. 95

FallbackWorkItemForward ... 97

WorkItemForward .. 98

Rules in IdentityIQ Page 5 of 170

Owner Rules ... 100

Owner ... 100

Policy Owner .. 100

GroupOwner ... 100

Scoping Rules .. 101

ScopeCorrelation .. 101

ScopeSelection ... 103

Identity and Account Mapping Rules ... 105

IdentityAttribute .. 105

IdentityAttributeTarget .. 106

Listener ... 108

LinkAttribute... 109

Form/Provisioning Policy-related Rules ... 110

FieldValue ... 111

AllowedValues .. 112

Validation ... 113

Owner ... 115

Workflow Rules .. 117

Workflow .. 117

Policy/Violation Rules ... 119

Policy .. 120

Violation ... 122

PolicyOwner ... 123

PolicyNotification ... 125

Login Configuration Rules .. 126

SSOAuthentication ... 126

SSOValidation ... 128

SAMLCorrelation .. 129

IdentityCreation ... 130

Logical Application Rules .. 131

CompositeAccount ... 131

CompositeRemediation .. 134

Rules in IdentityIQ Page 6 of 170

CompositeTierCorrelation .. 136

Unstructured Targets Rules .. 137

TargetCreation.. 137

TargetCorrelation ... 139

TargetRefresh ... 141

TargetTransformer ... 142

Alert Processing Rules .. 143

AlertCreation .. 143

AlertCorrelation .. 144

AlertMatch ... 146

Activity Data Source Rules.. 147

ActivityTransformer.. 147

ActivityCorrelation ... 149

ActivityPositionBuilder ... 150

ActivityConditionBuilder .. 152

Report Rules ... 153

ReportCustomizer .. 153

ReportValidation .. 154

ReportParameterQuery .. 155

ReportParameterValue .. 156

Miscellaneous Rules ... 157

RiskScore .. 158

RequestObjectSelector ... 159

TaskEventRule .. 162

TaskCompletion .. 163

Non-Standard Rules.. 168

Rule Libraries .. 168

Before/After Scripts ... 168

Appendix A: Loading Rules ... 170

Rules in IdentityIQ Page 7 of 170

Rules Overview

Rules are the construct through which IdentityIQ allows the addition of custom business logic at specific points

within the execution flow of the product. Rules are written in BeanShell, a lightweight scripting language based

on Java.

This guide describes how to create rules and associate them with system activities. It discusses each type of rule

available in IdentityIQ, explains the general usage of the rule type along with its input and output arguments,

and provides examples of how to implement each rule type.

Creating Rules

Rules are created within IdentityIQ in one of two ways:

1) Through the UI Rule Editor

2) By importing rule XML objects

UI Rule Editor

Rules are associated with system activities on a variety of pages throughout the IdentityIQ user interface. At

these points, an existing rule can be attached to the activity, the Rule Editor can be opened to write a new rule,

or an existing rule can be opened and edited in the Rule Editor. Each of these rule selection boxes allows only

rules of a prescribed type to be created for or associated to the given activity.

To open the Rule Editor and create a new rule, ensure that no rule is selected and click .

Figure 1: Create new rule

To associate an existing rule with the system activity, select the rule from the list.

Figure 2: Connect rule to object

To edit an existing rule in the Rule Editor, select the rule from the list and click .

Figure 3: Edit existing rule

NOTE: A single rule can be reused in many places throughout the product; for example, two applications could

share the same Build Map Rule. Changes made to the rule will affect the functionality in all locations where it is

Rules in IdentityIQ Page 8 of 170

used, so if the functionality varies slightly between usages, separate rules must be created for each functional

need.

When a rule is opened or newly created in the rule editor, the editor displays the current content of the rule (or

none, in the case of a new rule). It displays (in the panel to the right) the name of the rule, its type, its return

type, and its arguments. Though that right-hand panel also declares a return value in the Returns section, the

specified variable name is simply a placeholder and does not have to be used in the rule. In fact, the variable

name listed there is not actually available for use in the rule until it is specifically declared in the rule’s BeanShell

code.

Figure 4: Rule Editor

Importing Rule XML

Rules can be written as standalone XML objects and loaded into IdentityIQ through the GUI importer (Gear

menu -> Global Settings -> Import from File), or via the IdentityIQ console (iiq console, import command). A

single rule XML file can contain one or more rules to be loaded at one time. See Appendix A: Loading Rules for

steps to import rules.

Once in the system, these rules can be associated to activities through the user interface (as describe above).

Alternatively, the XML objects that drive execution of those rules (applications, certifications, tasks, etc.) can be

edited directly to reference rules; in fact, a few rule types (as noted in this document) can only be connected to

Rules in IdentityIQ Page 9 of 170

objects through the XML because no UI options currently exist for specifying them. In the XML, some rules are

pointed to through attributes map entries while others are connected by references.

Figure 5: Rule object XML

Figure 6: Application XML naming “NormalizePermissionBuildMapRule” as its Build Map Rule (by map entry)

Figure 7: Application XML referencing “Platform Correlation Rule” as its Correlation Rule (by reference)

Common Rule Arguments

All rules are universally passed two input parameter objects in addition to the rule-specific input parameters

listed for each individual rule. The common parameters are used for logging and for querying the IdentityIQ

database, respectively. They are:

Argument Type Purpose

log org.apache.log4j.Logger Can be used for logging from within rules
Use any of the log4j methods to log
messages; e.g.: log.debug(), log.trace(),
log.info(), etc.

context sailpoint.api.SailPointContext Provides a starting point for using the
SailPoint API. From this context, the rule
can interrogate all aspects of the IdentityIQ
data model including:

• Finding Identities, Identity Attributes

• Finding Accounts, Account Attributes

• Finding Roles, Role Attributes

Custom Log4J Logging in Rules

Though the log parameter is available by default from within any rule, its logging level is set according to the

logging level of the code that invokes it. Turning up logging (e.g. to the debug or trace level) in some system

components can result in a large volume of messages being generated, so the ability to adjust logging for the

Rules in IdentityIQ Page 10 of 170

rule by itself can be very helpful in the debugging process. This targeted logging adjustment is possible through

creation of a custom logger that applies only to the single rule. Creating a custom logger for a rule involves

adding a custom logger entry in the log4j.properties file and adding a custom logger object to the rule code.

In the log4j.properties file, create a custom logger using this naming convention and designate the desired

logging level:

log4j.logger. [uniquename].[ruleName]=[loglevel]

e.g.: log4j.logger.XYZCorp.FinanceCorrelationRule=debug

NOTE: This naming convention is recommended but is not strictly required. For example, it is possible to use the

same custom logger for all rules, if desired. The only requirement is that the name in the log4j.properties file

match the name specified in the rule code.

Include this code in the rule to create a logger object that uses the custom logger:

import org.apache.log4j.Logger;
Logger custLog = Logger.getLogger(" [uniquename].[rulename]");

e.g.: import org.apache.log4j.Logger;
Logger custLog = Logger.getLogger("XYZCorp.FinanceCorrelationRule");

Use this logger object in the rule logic to write messages of various levels to the log4J log file. The log level to

which the custom logger is set in the log4j.properties file determines which messages get written to the log file.

custLog.fatal("This is a fatal error message.");

custLog.error("This is an error message.");

custLog.warn("This is a warn message.");

custLog.info("This is an info message.");

custLog.debug("This is a debug message.");

custLog.trace("This is a trace message.");

Printing the Beanshell Namespace

Though this document outlines the set of variables available in each of the rule types, sometimes a single rule

type may be called from multiple places in IdentityIQ, and different arguments may apply in each context. In

those cases, the list of arguments shown in the Rule Editor and in this document may represent only the set that

is universally available to rules of that type. This code snippet can be used in the rule to print all of the variables

available in the beanshell namespace for the currently executing rule so they can be examined and better

understood.

print("Beanshell namespace:");

for (int i = 0; i < this.variables.length; i++) {

 String name = this.variables[i];

 // skip “transient” variable in workflow steps because

 // transient is a Java reserved word and fails eval()

 if ("transient".equals(name)) {continue;}

 Object value = eval(name);

 if (value == void)

 print(name + " = void");

 else if (value == null)

Rules in IdentityIQ Page 11 of 170

 print(name + " = null");

 else if (value instanceof sailpoint.object.SailPointObject) {

 // print XML representation if it is a SailPointObject

 print(name + "(" + value.getClass().getSimpleName() + ")=" + value.toXml());

 } else

 print(name + ": " + value.getClass().getSimpleName() + " = " + value);

}

Managing Rule Arguments

Rules are often passed references to objects such as Applications or Certifications. In general, these objects

should not be modified by the rule, since changes to them may be persisted to the database in subsequent steps

of IdentityIQ’s processing. The primary exception to this recommendation is when a rule does not return a value

but instead expects one of the rule arguments to be modified in place. This document clearly notes when this is

the expected behavior of a rule.

Rules in IdentityIQ Page 12 of 170

Rule Types

This section describes each rule type in detail. The rule types are grouped by the system functionality to which

they relate. Some rules may fall in multiple categories and are therefore described in one category and

mentioned (with a reference to the description location) in other sections. Rules that don’t fall neatly into any

grouping are described in the Miscellaneous Rules section at the end.

Connector Rules

Connector Rules are used during aggregation from specific connectors, such as (commonly) DelimitedFile, JDBC,

SAP and RuleBasedFileParser. Connector rules run before Aggregation rules in the aggregation process. These

rules are used to:

• implement pre-processing of data

• implement post-processing of data

• manipulate, merge or otherwise transform the incoming data as it’s being read

The rules that are listed in this section run in the order they are specified here, though only some of these rules

apply to certain connectors (as noted in the rule descriptions).

PreIterate

Description

A PreIterate Rule applies only to DelimitedFile and RuleBasedFileParser connectors. It is run immediately after

the file input stream is opened, before all other connector rules. It can be used to execute any processing that

should occur prior to iterating through the records in the file. Commonly it is used to configure global data that

will be used by the other rules, unzip/move/copy files, or validate files.

PreIterate rules often work in conjunction with PostIterate rules. Sometimes actions performed in the

PreIterate rule are concluded or cleaned up by the PostIterate rule, and sometimes the PostIterate rule is used

to record information that will be accessed and acted upon by the PreIterate rule during the next aggregation

for the application.

A PreIterate rule only runs once during an aggregation of a delimited file connector. As a result, this rule

generally has a minimal impact on performance.

Definition and Storage Location

PreIterate rules are associated to an application in the UI when defining an application of type DelimitedFile or

RuleBasedFileParser.

Applications -> Application Definition -> select or create an application of Application Type:

DelimitedFile -> Rules -> PreIterate Rule

Applications -> Application Definition -> select or create an application of Application Type:

RuleBasedFileParser -> Configuration -> Settings -> preIterateRule

Rules in IdentityIQ Page 13 of 170

The reference to the rule is recorded in the attributes map of the Application XML.

<entry key="preIterateRule" value="[PreIterate Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
application sailpoint.object.Application A reference to the Application object

schema sailpoint.object.Schema A reference to the Schema object for the
delimited file source being read

stats java.util.Map A map passed by the connector of the stats
for the file about to be iterated. Contains
keys:

• fileName: (String) filename of the file
about to be processed

• absolutePath: (String) absolute
filename

• length: (Long) file length in bytes

• lastModified: (Long) last time the file
was updated (Java GMT)

Outputs: None, usually. The rule’s logic generally performs updates to objects outside of the aggregation data

flow, so subsequent aggregation steps do not expect a return value from this rule.

NOTE: A preIterate rule can optionally return an inputStream. If it does, this new stream will replace the

opened file inputStream in the remainder of the delimited file processing.

Examples

This example PreIterate rule reads data recorded in a configuration object by a previous aggregation run’s

PostIterate rule and compares it to the current aggregation statistics. PreIterate and PostIterate rules are

commonly used together in this way; this can provide some continuity between aggregations. Data is stored

into a custom configuration object (in this case, named “[AppName]_aggregationStats”) by the PostIterate rule

and read from it by the PreIterate rule on the next aggregation run.

import sailpoint.api.SailPointFactory;

import sailpoint.api.SailPointContext;

import sailpoint.tools.GeneralException;

import sailpoint.tools.xml.XMLObjectFactory;

import sailpoint.object.Configuration;

SailPointContext ctx = SailPointFactory.getCurrentContext();

if (ctx == null) {

 throw new GeneralException("Unable to get sailpoint context.");

}

String name = application.getName() + "_aggregationStats";

Configuration config = ctx.getObject(Configuration.class,name);

// The existence of a config object means the post rule

Rules in IdentityIQ Page 14 of 170

// has created an object and the stats should be checked

if (config != null) {

 if (log.isDebugEnabled()) {

 log.debug("CurrentStats: \n" + XMLObjectFactory.getInstance().toXml(stats));

 log.debug("Config : \n" + config.toXml());

 }

 String key = schema.getObjectType();

 Map lastStats = (Map)config.get(key);

 if (lastStats != null) {

 Long lastMod = (Long)lastStats.get("lastModified");

 Long currentMod = (Long)stats.get("lastModified");

 if (currentMod < lastMod) {

 throw new GeneralException("Last modification date is older than it was

during the last aggregation!");

 }

 // This scenario probably isn't real world (the size could decrease

 // without a problem); including it here for illustration

 Long currentLength = (Long)stats.get("length");

 Long lastLength = (Long)lastStats.get("length");

 if (currentLength < lastLength) {

 throw new GeneralException("The data file's length is less than it was during

the last aggregation!");

 }

 } else {

 if (log.isDebugEnabled()) {

 log.debug("Configuration for ["+key+"] was not found...Nothing checked.");

 }

 }

} else {

 if (log.isDebugEnabled()) {

 log.debug("Configuration ["+name+"] was not found...Nothing checked.");

 }

}

This example PreIterate rule places some data into CustomGlobal for use by the BuildMap (or some other) rule

during aggregation. CustomGlobal is a class used to maintain a static Map of custom attributes; it was designed

as a tool for maintaining global variables across calls to custom rules. NOTE: When the process is done with the

CustomGlobal contents, another rule (such as the PostIterate rule) should clean up by removing the entry from

CustomGlobal.

import sailpoint.object.CustomGlobal;

import java.util.HashMap;

log.debug("\n\nStarting Pre-Iterate Rule");

HashMap myHashMap = new HashMap();

myHashMap.put("length",stats.get("length"));

myHashMap.put("lastModified",stats.get("lastModified"));

CustomGlobal.put("FileStatMap",myHashMap);

return null;

Rules in IdentityIQ Page 15 of 170

BuildMap

Description

A BuildMap rule applies only to applications of type DelimitedFile. It is run for each row of data as it is read in

from a connector. A BuildMap rule is used to manipulate the raw input data (provided via the rows and columns

in the file) and build a map out of the incoming data.

If no BuildMap rule is specified, the default behavior is to traverse the column list (from the file header record or

Columns list) and the parsed record, assigning each record element to the columns in order and inserting those

pairs into a map. For example:

Columns: Name, ID, Phone
Record: John Doe, 1a3d3f, 555-555-1212
Map: Name, John Doe; ID, 1a3d3f; Phone, 555-555-1212

A convenience method is available to BuildMap rules that performs this default behavior. The remainder of the

rule can then make modifications to the map. The convenience method is:

DelimitedFileConnector.defaultBuildMap(cols, record);

The rule must import the sailpoint.connector.DelimitedFileConnector class to use this method.

NOTE: Because this rule is run for each record in the input file, it can have a noticeable effect on performance if

it contains time-intensive operations. Where possible, complicated lookups should be done in the PreIterate

rule, with the results stored in CustomGlobal for use by the BuildMap rule; the global data should be removed

by the PostIterate rule.

Definition and Storage Location

This rule is associated to an application in the UI on the Rules tab when defining an application of type

DelimitedFile.

Applications -> Application Definition -> create or select an application of Application Type:

DelimitedFile -> Rules -> Build Map Rule

The rule name is recorded in the attributes map of the application XML.

<entry key="buildMapRule" value="[BuildMap Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.Application A reference to the Application object.
schema sailpoint.object.Schema A reference to the Schema object for the

Delimited File source being read.

state java.util.Map A Map that can be used to store and share data
between executions of this rule during a single

Rules in IdentityIQ Page 16 of 170

aggregation run
record java.util.List An ordered list of the values for the current

record (parsed based on the specified delimiter)

cols java.util.List An ordered list of the column names from the
file’s header record or specified Columns list

Outputs:

Argument Type Purpose

map java.util.Map Map of names/values representing a row of data
from the delimited file resource.

Example

This example BuildMap rule first invokes the default logic to create a map based on the defined columns and the

record’s values. It then manipulates targets and rights into direct permission objects by joining the map’s target

and rights values into a single direct permission value which is added to the map. The original target and rights

are then removed from the map.

import sailpoint.connector.DelimitedFileConnector;

import sailpoint.object.Permission;

// Execute default build map logic

Map map = DelimitedFileConnector.defaultBuildMap(cols, record);

String strTarget = (String) map.get("target");

String strRights = (String) map.get("rights");

//Manipulate Target and Rights into Permissions

if (strTarget != null && strRights != null) {

 Permission perm = new Permission();

 perm.setRights(strRights);

 //probably need some annotations for these

 perm.setAnnotation("Annotation For Target: " + strTarget);

 perm.setTarget(strTarget);

 permList = new ArrayList();

 permList.add (perm);

 map.remove("target");

 map.remove("rights");

 map.put("directPermissions", permList);

}

return map;

JDBCBuildMap

Description

A JDBCBuildMap rule applies only to applications of type JDBC. It functions for JDBC applications just like the

BuildMap rule does for Delimited File applications: it is used by the JDBC connector to create a map

representation of the incoming ResultSet. The rule is called for each row of data as it is read in from the JDBC

Rules in IdentityIQ Page 17 of 170

connector. It is used to manipulate the raw input data (provided via the rows and columns) to build a map out of

the incoming data.

If no JDBCBuildMap rule is called, the default logic builds the map out of the result data by directly matching the

columns and values just as they come from the connector. There is a convenience method available to the rule

to execute this default logic and build the basic map; the remainder of the rule can then make modifications to

the default map. This convenience method is:

JDBCConnector.buildMapFromResultSet(result, schema);

The rule must import the sailpoint.connector.JDBCConnector class to use this method.

NOTE: Since this rule is run for every row of data returned from the resource, time-intensive operations

performed within this rule can have a noticeable impact on aggregation performance. Try to avoid lengthy or

complex operations in this rule.

Definition and Storage Location

The rule is associated to the application on the Rules tab when defining an application of type JDBC.

Applications -> Application Definition -> create or select an application of Application Type: JDBC ->

Rules -> Build Map Rule

The rule name is recorded in the attributes map of the application XML.

<entry key="buildMapRule" value="[JDBCBuildMapRuleName]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
application sailpoint.object.Application A reference to the Application object

schema sailpoint.object.Schema A reference to the Schema object for the JDBC
source being read

state java.util.Map A Map that can be used to store and share
data between executions of this rule during a
single aggregation run

result java.sql.ResultSet The current ResultSet from the JDBC
Connector

connection java.sql.Connection A reference to the current SQL connection

Outputs:

Argument Type Purpose

map java.util.Map Map of names/values representing a row of
data from the JDBC resource

Rules in IdentityIQ Page 18 of 170

Example

This basic rule performs the default mapping and then replaces the “status” value read from the database with a

Boolean “inactive” attribute in the map.

import sailpoint.connector.*;

Map map = JDBCConnector.buildMapFromResultSet(result, schema);

string status = (String) map.get("status");

if "inactive".equals(status) {

 map.put("inactive", true);

} else {

 map.put("inactive", false);

}

map.remove("status");

return map;

SAPBuildMap

Description

An SAPBuildMap rule applies only to applications of type SAP. This rule differs from the Delimited File BuildMap

rule and the JDBCBuildMap rule in that the SAP connector builds the attribute map for each object read from

the connector before it calls this rule, so it passes the rule a prebuilt Map object instead of requiring the rule to

build the map from a record or resourceObject. This rule can then modify the map as needed. The rule also

receives a “destination” object through which it can make SAP calls to retrieve extra data.

NOTE: Since an SAPBuildMap rule is run once for every object read from an SAP data source, performing time-

intensive operations in this rule can have a negative performance impact.

Definition and Storage Location

An SAPBuildMap rule is associated with the application on the Configuration-Settings tab when defining an

application of type SAP.

Applications -> Application Definition -> create or edit application of Application Type: SAP - Direct or

SAP HR/HCM -> Configuration -> Settings -> SAP JCO Connection Settings section -> BuildMap Rule

The rule name is recorded in the attributes map of the application XML.

<entry key="buildMapRule" value="SAPBuildMapRuleName"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.Application A reference to the Application object

schema sailpoint.object.Schema A reference to the Schema object that
represents the object we are building

Rules in IdentityIQ Page 19 of 170

state java.util.Map A Map that can be used to store and share
data between executions of this rule during
a single aggregation run

destination com.sap.conn.jco.JCoDestination A connected and ready to use SAP
destination object that can be used to call
BAPI function modules and call to SAP
tables.

object sailpoint.object.Attributes A reference to a SailPoint attributes object
(basically a Map object with some added
convenience methods) that holds the
attributes that have been built up by the
default connector implementation. The rule
should modify this object to change, add or
remove attributes from the map.

connector sailpoint.connector.SAPInternalC
onnector

A reference to the current SAP Connector

Outputs: None. The rule modifies the “object” attribute directly to change the map, and subsequent IdentityIQ

logic acts on the map as modified, making the “object” attribute the effective return value from the rule.

Example

This example SAP Build Map rule constructs an Initials attribute from the first character of the FirstName and

LastName attributes and changes the name of the “InitDate” attribute to “HireDate”.

import java.util.HashMap;

// Create initials

String firstName = object.get("FirstName");

String lastName = object.get("LastName");

String initials = "";

if (firstName != null && firstName.length() > 0) {

 char letter = firstName.charAt(0);

 letter = Character.toUpperCase(letter);

 initials = letter + ".";

}

if (lastName != null && lastName.length() > 0) {

 letter = lastName.charAt(0);

 letter = Character.toUpperCase(letter);

 initials += letter + ".";

}

object.put("Initials", initials);

object.put("HireDate", object.remove("InitDate"));

SAPHRManagerRule

Description

SAP HR/HCM contains HR data and therefore often contains the manager-employee relationship data for the

organization. There are a couple of different predefined manager relationship models which are supported in

Rules in IdentityIQ Page 20 of 170

the application, but some customers may have a custom manager relationship model implemented. This rule

allows those customers to apply their model to the data read from the SAP HR/HCM application to calculate the

appropriate manager user for each identity. This rule type was introduced in IdentityIQ version 7.1.

Definition and Storage Location

An SAPHRManagerRule is associated with the application on the Configuration-Settings tab when defining an

application of type SAP HR/HCM.

Applications -> Application Definition -> select or create an application of Application Type: SAP HR/HCM

-> Configuration -> Settings -> Manager Configuration section -> Custom -> Manager Rule

The rule name is recorded in the attributes map of the application XML.

<entry key="sapHRCustomManagerRule" value="SAP HR Manager Rule Name"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.Application A reference to the Application object

schema sailpoint.object.Schema A reference to the Schema object that
represents the object we are building

destination com.sap.conn.jco.JCoDestination A connected and ready to use SAP
destination object that can be used to call
BAPI function modules and call to SAP
tables.

connector sailpoint.connector.SAPInternalC
onnector

A reference to the current SAP Connector

Outputs:

Argument Type Purpose

supervisor String ID of the manager’s Identity

Example

Usually, one of the built-in manager models would be used for SAPHR, so this rule type only applies when those

are not in use. This example presumes the existence of a remote function in SAPHR called ZGETSUPERVISORID

which accepts a positionId and employeeId value and returns the SupervisorId in its results. The actual logic

needed in this rule would be completely dependent on the customer implementation details.

import java.util.*;

import com.sap.conn.jco.JCoDestination;

import com.sap.conn.jco.JCoException;

import com.sap.conn.jco.JCoFunction;

import com.sap.conn.jco.JCoTable;

String supervisor = null;

Rules in IdentityIQ Page 21 of 170

// Either a custom BAPI or the HRP1001 table can be used to determine the supervisor

// id of an employee. For example, if there were a remote function module

// ZGETSUPERVISORID which required inputs of position id ,employee id to

// determine the supervisor, this rule could be used

JCoFunction getDetail = connector.getFunction(destination, "ZGETSUPERVISORID");

getDetail.getImportParameterList().setValue("POSITION", position);

getDetail.getImportParameterList().setValue("EMPLOYEEID", employeeID);

executeFunction(destination, getDetail);

Object supervisorId = getDetail.getExportParameterList().getValue("SUPERVISOR");

supervisor = (String)supervisorId;

return supervisor;

PeopleSoftHRMSBuildMap

Description

A PeopleSoftHRMSBuildMap rule applies only to applications of type PeopleSoft HCM Database. This rule was

introduced in version 7.0 with the PeopleSoft HCM Database Connector.

As with the SAPBuildMap rule above, the PeopleSoft HRMS connector builds the attribute map for each object

read from the connector before it calls this rule, so it passes the rule a prebuilt Map object instead of requiring

the rule to build the map from a record. This rule can then modify the map as needed.

NOTE: Since a PeopleSoftHRMSBuildMap rule is run once for every object read from a PeopleSoft HRMS data

source, performing time-intensive operations in this rule can have a negative performance impact.

Definition and Storage Location

A PeopleSoftHRMSBuildMap rule can be specified on the application settings page:

Applications -> Application Definition -> select application or create new of ApplicationType =

PeopleSoft HCM Database -> Configuration -> Settings -> JDBC Connection Settings section -> Build Map

Rule

The rule name is recorded in the attributes map of the application XML.

<entry key="buildMapRule" value="PeopleSoftHRMSBuildMapRule Name"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
application sailpoint.object.Application A reference to the Application object

schema sailpoint.object.Schema A reference to the Schema object that
represents the object we are building

state java.util.Map A Map that can be used to store and share
data between executions of this rule during
a single aggregation run

Rules in IdentityIQ Page 22 of 170

identity String Name of the target identity

connection java.sql.connection Connection to the application database

connector sailpoint.connector.PeopleSoftHR
MSConnector

A reference to the current PeopleSoft
HRMS Connector

map java.util.Map Map of attributes pre-built by the
connector, to which the rule can add more
attributes, as needed

Outputs:

Argument Type Purpose

map java.util.Map Map of names/values representing a
person/account in the PeopleSoft HRMS
application

Example

This example rule adds an extra attribute (MFC_IMUSERID) to the map of attributes being aggregated from

PeopleSoft, providing the networkID for the user as an account attribute.

 import java.sql.Statement;

 import java.sql.ResultSet;

 import java.util.HashMap;

 import java.util.Map;

 import sailpoint.connector.JDBCConnector;

 import sailpoint.connector.PeopleSoftHRMSConnector;

 import sailpoint.connector.PeopleSoftDirectConnector;

 Statement statement=null;

 ResultSet resultSet = null;

 String type = schema.getObjectType();

 // Return the map with all attribute values which are present in the schema. The

 // connector object will call the buildMap method which contains the resource

object.

 // The type will be account.

 // The query retrieves the Network ID of the PeopleSoft HR record which has primary

flag

 // as 'Y'. The Network ID is a collection attribute defined in PeopleSof HRMS.

Table for

 // accessing the Network ID is PS_PERSON_IMCHAT and MCF_IMUSERID is the attribute

which

 // is mapped as NetworkID in PeopleSoft portal.

 String query = "select MCF_IMUSERID from PS_PERSON_IMCHAT where PREF_CHATID_FLAG =

'Y' and EMPLID ='" + identity + "'";

 //The connection object is in context and executing the above query. The result

will

 //return the data of the field.

 statement = connection.createStatement();

 resultSet = statement.executeQuery(query);

 if (resultSet.next()) {

 String networkIDValue = resultSet.getObject(1);

 map.put("MCF_IMUSERID",networkIDValue);

Rules in IdentityIQ Page 23 of 170

 }else{

 if(log.isDebugEnabled()){

 log.debug("No NetworkID exist for user:"+ identity);

 }

 }

 statement.close();

 resultSet.close();

 //Return the map of which contains the final resource object map with the new

field value.

 return map;

FileParsingRule

Description

A FileParsingRule is used with applications of type RuleBasedFileParser, which is used to parse non-delimited

files. This connector can read account and group data from non-standard or free format text. The rule is called

to retrieve each complete record from the file; logic in the rule determines what constitutes a complete record –

whether that is on one line in the file or whether it spans multiple lines.

NOTE: Since the FileParsingRule rule runs to extract every account or group record from the file and build it into

a map, any time-intensive operations performed in this rule can have a negative performance impact.

Definition and Storage Location

The rule is associated to the application on the Configuration-Settings tab when defining an application of type

RuleBasedFileParser.

Applications -> Application Definition -> select or create application of Application Type:

RuleBasedFileParser -> Configuration -> Settings -> parseRule

The rule name is recorded in the attributes map of the application XML.

<entry key="parseRule" value="[FileParsingRule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
application sailpoint.object.Application A reference to the Application object.

schema sailpoint.object.Schema A reference to the Schema object for the
Delimited File source being read.

config sailpoint.object.Attributes Attributes Map of Application configuration
attributes

inputStream java.io.BufferedInputStream A reference to the file input stream

reader java.io.BufferedReader A reader wrapping the inputStream
state java.util.Map A Map that can be used to store and share

data between executions of this rule during
a single aggregation run

Rules in IdentityIQ Page 24 of 170

Outputs:

Argument Type Purpose

map java.util.Map Return value representing a Map of names/values from
the connected resource.

Example

This example rule reads records from a file and parses records with a specific tag present according to a fixed

record layout.

import java.io.BufferedInputStream;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

HashMap map = new HashMap();

String record;

// Read a record from file; look for XYZ string in record and

// parse those records into substrings to extract data

if ((record = reader.readLine()) != null) {

 if (record.contains("XYZ")) {

 String userId = record.substring(record.indexOf("XYZ") + 8,

record.indexOf("XYZ") + 12);

 map.put("UserId", userId);

 String fullname = record.substring(record.indexOf("XYZ") + 16,

record.indexOf("XYZ") + 36).trim();

 map.put("FullName",fullname);

 String permission = record.substring(record.indexOf("XYZ") + 40,

record.indexOf("XYZ") + 44);

 map.put("Permission", permission);

}

return map;

MergeMaps

Description

A MergeMaps rule is used to specify a custom basis for merging of rows from a Delimited File or JDBC

application. The connectors include a default merge algorithm that merges the rows based on the defined

merge parameters. If a MergeMaps rule is specified, it overrides the default merge operation with the rule’s

custom behavior.

Rules in IdentityIQ Page 25 of 170

A convenience method is available that performs the default merge algorithm, allowing the remainder of the

rule to apply customizations to that default merging. This convenience method is:

AbstractConnector.defaultMergeMaps(current, newObject, mergeAttrs);

The sailpoint.connector.AbstractConnector class must be imported into the rule to use this method.

(Alternatively, since both the DelimitedFileConnector and the JDBCConnector classes extend AbstractConnector,

the applicable one of those classes could be imported with the method call naming that class instead.)

NOTE: Since the MergeMaps rule runs for every row or ResultSet of data from a delimited file or JDBC data

source, performing lengthy operations in this rule can have a negative effect on aggregation performance.

Definition and Storage Location

The rule is associated to the application on the Rules tab when defining an application of type DelimitedFile or

JDBC.

Applications -> Application Definition -> create or edit application of Application Type: Delimited File or

JDBC -> Rules -> MergeMaps Rule

The rule name is recorded in the attributes map of the application XML:

<entry key="mergeMapsRule" value="MergeMapsRuleName"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.Application A reference to the Application object.
schema sailpoint.object.Schema A reference to the Schema object for the

Delimited File or JDBC source being read.

current java.util.Map The current Map object

newObject java.util.Map The map representation of the next row that
potentially needs to be merged into the current
object based on mergeAttrs

mergeAttrs java.util.List (of Strings) Names of attributes that need to be merged,
specified as part of the application configuration

Outputs:

Argument Type Purpose
merged java.util.Map Map of names/values representing a merged row of data

from the connected resource.

Rules in IdentityIQ Page 26 of 170

Example

For each attribute in the mergeAttrs list, this example MergeMaps rule first tries to merge any values from the

new object attribute into a List in the current object attribute. If the current object does not contain a list for

that attribute (or if the attribute is null), the rule replaces the current object value with the new object value.

import java.util.Map;

import java.util.HashMap;

Map merged = new HashMap(current);

for (String attrName : mergeAttrs) {

 Object currentValue = current.get(attrName);

 Object additionalValue = newObject.get(attrName);

 if (currentValue != null) {

 if (additionalValue != null) {

 if (currentValue instanceof List) {

 if (additionalValue instanceof List) {

 // loop through additional values list adding to current

 // value list if not already there

 for (Object value : (List)additionalValue) {

 if (!((List)currentValue).contains(value)) {

 ((List)currentValue).add(value);

 }

 }

 } else {

 if (!((List)currentValue).contains(additionalValue)) {

 // Add value to list if not already there

 ((List)currentValue).add(additionalValue);

 }

 }

 } else { // currentValue is not list

 // replace attribute with new object value in return map

 merged.put(attrName, additionalValue);

 }

 }

 } else { // current value is null

 if (additionalValue != null) {

 // Add additionalValue as attribute in map

 merged.put(attrName, additionalValue);

 }

 }

} // end for

return merged;

Transformation

Description

This rule is run for every account or group read from a delimited file or JDBC application. It runs after the

BuildMap rule (and MergeMaps, if applicable) and is used to control the transformation of each map into a

ResourceObject. Connectors must get data into this ResourceObject format before it can be processed by the

aggregator and the aggregation rules.

If no transformation rule is specified, the transformation is performed through the defaultTransformObject

method in the AbstractConnector class. This method is available to the rule as a convenience method and can

Rules in IdentityIQ Page 27 of 170

be used to do the basic conversion, allowing the rule to do further customization on the ResourceObject in the

remainder of its logic. The convenience method is:

AbstractConnector.defaultTransformObject(schema, object);

The sailpoint.connector.AbstractConnector class must be imported into the rule to use this method.

NOTE: Since the Transformation rule runs for every map created from the source data, time-intensive

operations performed in it can have a negative impact on aggregation performance.

Definition and Storage Location

The rule is associated to an application on the Rules tab when defining an application of type DelimitedFile or

JDBC.

Applications -> Application Definition -> create or edit application of Application Type: DelimitedFile or

JDBC -> Rules -> Map To ResourceObject Rule

The rule name is recorded in the attributes map of the application XML.

<entry key="mapToResourceObjectRule" value="[Transformation Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
application sailpoint.object.Application A reference to the Application object.

schema sailpoint.object.Schema A reference to the Schema object for the
Delimited File source being read.

object java.util.Map The incoming Map object

Outputs:

Argument Type Purpose

resourceObject sailpoint.object.ResourceObject Return value representing a
ResourceObject constructed from the
incoming Map

Example

This example transformation rule would be specified for an application that is loading AD data from a delimited

file. It examines the memberOf attribute for an Admin group membership and adds an “isAdmin” attribute to

the resourceObject where applicable.

import sailpoint.connector.AbstractConnector;

import sailpoint.object.ResourceObject;

ResourceObject ro = AbstractConnector.defaultTransformObject(schema, object);

Rules in IdentityIQ Page 28 of 170

List groups = (List)ro.getAttribute("memberOf");

if (groups != null) {

 for (String group : groups) {

 if ((group != null) &&

 (group.startsWith("cn=Domain Admins"))) {

 ro.put("isAdmin", true);

 }

 }

}

return ro;

PostIterate

Description

A PostIterate Rule can be specified only for an application of Type: DelimitedFile or RuleBasedFileParser. It runs

after all other connector rules and can be used to execute any processing that should occur after the connector

iteration is complete. Commonly, it is used to remove any global data used by the other rules (e.g. from

CustomGlobal), clean up files, or mark statistics in a configuration object that will be used by the PreIterate rule

during a subsequent aggregation. Since it runs only once per aggregation, this rule generally has a minimal

impact on aggregation performance.

Definition and Storage Location

The rule is associated with the application in the UI when defining an application of type DelimitedFile or

RuleBasedFileParser.

Applications -> Application Definition -> select or create an application of Application Type:

DelimitedFile -> Rules -> PostIterate Rule

Applications -> Application Definition -> select or create an application of Application Type:

RuleBasedFileParser -> Configuration -> Settings -> postIterateRule

The Rule name is recorded in the attributes map of the Application XML.

<entry key="postIterateRule" value="[PostIterate Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
application sailpoint.object.Application A reference to the Application object

schema sailpoint.object.Schema A reference to the Schema object for the
Delimited File/JDBC source being read

stats java.util.Map A map of the stats for the file just iterated

Contains keys:

• fileName : (String) filename of the
file about to be processed

• absolutePath : (String) absolute
filename

Rules in IdentityIQ Page 29 of 170

• length : (Long) length in bytes

• lastModified : (Long) last time the
file was updated Java GMT

• columnNames : (List) column
names that were used during the
iteration

• objectsIterated : (Long) total
number of objects iterated during
this run

Outputs: None. The rule’s logic acts upon objects outside of the aggregation data flow, so subsequent steps in

the process do not expect a return value from this rule and will not act upon it if one were provided.

Examples

This example PostIterate rule records some information in a custom configuration object so that it can be read

and acted upon by a subsequent PreIterate rule.

import sailpoint.api.SailPointFactory;

import sailpoint.api.SailPointContext;

import sailpoint.tools.GeneralException;

import sailpoint.object.Configuration;

import sailpoint.object.Attributes;

SailPointContext ctx = SailPointFactory.getCurrentContext();

if (ctx == null) {

 throw new GeneralException("Unable to get sailpoint context.");

}

String name = application.getName() + "_aggregationStats";

Configuration config = ctx.getObject(Configuration.class,name);

if (config == null) {

 if (log.isDebugEnabled()) {

 log.debug("Configuration ["+name+"] was not found creating new one.");

 }

 config = new Configuration();

 config.setName(name);

}

Attributes attrs = config.getAttributes();

if (attrs == null) attrs = new Attributes();

String key = schema.getObjectType();

attrs.put(key, stats);

config.setAttributes(attrs);

if (log.isDebugEnabled()) {

 log.debug("Newly created Configuration object :\n"+ config.toXml());

}

ctx.saveObject(config);

ctx.commitTransaction();

This example PostIterate rule removes data from CustomGlobal that was stored there by a PreIterate rule for a

BuildMap or other rule to use (see PreIterate rule example).

import sailpoint.object.CustomGlobal;

Rules in IdentityIQ Page 30 of 170

System.out.println("In Post-Iterate Rule...");

// Remove the Map from custom global...

if (CustomGlobal.get("FileStatMap"))

{

 CustomGlobal.remove("FileStatMap");

}

WebServiceBeforeOperationRule

Description

The WebService connector supports interaction with (through both read and write operations) systems which

provide a REST API to allow other applications to connect to them. The appropriate REST calls can be configured

for each desired interaction type. For each interaction type, a “before” and “after” operation rule can be

specified, as described here and in the next rule type. This connector type, and therefore this rule, was added to

IdentityIQ in version 7.1.

NOTE: The WebService connector only supports JSON Responses from the API for both read and write

operations.

The WebServiceBeforeOperationRule is run immediately before running the associated REST call to the target

system. Examples of actions it can perform include fetching a run-time generated token from the target system

to be used in the REST API call or modifying the request to handle paged results.

Definition and Storage Location

This rule can be specified in the application definition for applications using the Web Services connector.

Applications -> Application Definition -> choose or add new application of Application Type: Web

Services -> Configuration -> Settings -> Connector Operations: Add Operation -> click pencil icon to edit -

> Before Rule -> Before Operation Rule

It appears in the application XML as part of the connectionParameters entry in each operation’s map like this:

<entry key="connectionParameters">

 <value>

 <List>

 <Map>

 <entry key="beforeRule" value="Before Operation Rule Name"/>

 …

 Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.Application Application whose data file is being processed

requestEndPoint sailpoint.connector.webserv
ices.EndPoint

Current request information; contains the header,
body, context url, method type, response attribute
map, successful response code

oldResponseMap Java.util.Map Earlier response object

Rules in IdentityIQ Page 31 of 170

restClient sailpoint.connector.webserv

ices.WebServicesClient

REST client object

Outputs:

Argument Type Purpose
endpoint Sailpoint.connector.webserv

ices.EndPoint
Updated EndPoint Object

Example

This example rule works in conjunction with the example WebServicAfterOperationRule, shown below, to

provides paging support when retrieving data from DropBox. If the retrieved data is paged, the

AfterOperationRule sets the cursor into a “transientValues” map in the application. Then this rule checks to see

if there is a cursor present (indicating paged results) and modifies the postBodyMap and requestEndPoint URL

accordingly so the operation itself will retrieve the next page of data.

import com.google.gson.Gson;

import sailpoint.tools.Util;

Map obj = (Map) application.getAttributeValue("transientValues");

if(null != obj) {

 String cursor = obj.get("cursor");

if(Util.isNotNullOrEmpty(cursor)) {

 Map postBodyMap = (Map) requestEndPoint.getBody();

 postBodyMap.put("jsonBody", "{\"cursor\":\"" + cursor + "\"}");

 requestEndPoint.setFullUrl(requestEndPoint.getFullUrl() + "/continue");

 }

}

return requestEndPoint;

WebServiceAfterOperationRule

Description

The WebService connector allows IdentityIQ to connect to applications through the applications’ REST API

methods, for both read and write operations. The appropriate REST calls can be configured for each desired

operation type. For each operation type, a “before” and “after” operation rule can be specified, as described

here and in the rule type above. This connector type, and therefore this rule, was added to IdentityIQ in version

7.1.

The WebServiceAfterOperationRule is run immediately after running the associated REST call to the target

system.

Definition and Storage Location

This rule can be specified in the application definition for applications using the Web Services connector.

Rules in IdentityIQ Page 32 of 170

Applications -> Application Definition -> choose or add new application of Application Type: Web

Services -> Configuration -> Settings -> Connector Operations: Add Operation -> click pencil icon to edit -

> After Rule -> After Operation Rule

It appears in the application XML as part of the connectionParameters entry in each operation’s map like this:

<entry key="connectionParameters">

 <value>

 <List>

 <Map>

 <entry key="afterRule" value="After Operation Rule Name"/>

 …

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
application sailpoint.object.Appli

action
Application whose data file is being processed

requestEndPoint sailpoint.connector.w
ebservices.EndPoint

Current request information; contains the
header, body, context url, method type,
response attribute map, successful response
code

processedResponse
Object

List<Map<String,
Object>>

Response Object processed by the Web
Services connector

rawResponseObject String Response Object returned from the end system

restClient sailpoint.connector.w
ebservices.WebServic
esClient

REST client object

Outputs:

Argument Type Purpose

updatedAccountOr
GroupList

Java.util.Map Updated information map containing parsed list
of accounts

Example

This example rule works in conjunction with the example WebServicBeforeOperationRule, shown above, to

provides paging support when retrieving data from DropBox. This AfterOperationRule checks for “cursor” and

“has_more” attributes in the operation’s JSON response, which indicate that the response contains paged

results, and sets them into a “transientValues” map in the application definition. Then the BeforeOperationRule

checks to see if there is a cursor present (indicating paged results) in the application’s transientValues map and

modifies the postBodyMap and requestEndPoint URL accordingly so the operation itself will retrieve the next

page of data.

import com.google.gson.Gson;

Rules in IdentityIQ Page 33 of 170

import com.google.gson.JsonElement;

import com.google.gson.JsonObject;

import com.google.gson.JsonParser;

import sailpoint.tools.Util;

Gson gson = new Gson();

JsonObject jsonObject = new JsonParser().parse(rawResponseObject).getAsJsonObject();

String cursor = jsonObject.get("cursor").getAsString();

boolean hasMore = jsonObject.get("has_more").getAsBoolean();

if(Util.isNotNullOrEmpty(cursor)) {

 Map transientValues = application.getAttributeValue("transientValues");

 if(transientValues == null) {

 transientValues = new HashMap();

 application.setAttribute("transientValues", transientValues);

 }

 transientValues.put("cursor", cursor);

 transientValues.put("hasMore", hasMore);

This example code snippet shows how you could update the processedResponseObject in your rule (this

example sets the value of a specific attribute to upper case).

import java.util.Map.Entry;

for (Map hm : processedResponseObject) {

 Set entries2 = hm.entrySet();

 for (Entry entry : entries2) {

 if(entry.getKey().equals("PRIVId")) {

 String value = (String)entry.getValue();

 entry.setValue(((String)entry.getValue()).toUpperCase());

 }

 }

 }

RACFPermissionCustomization

Description

The RACFPermissionCustomization rule is run during aggregation from the newer (version 7.1+) RACF direct

connector. It is used to customize the permissions map.

Definition and Storage Location

This rule is an XML-only configuration. It appears in the application XML as part of the Attributes map like this:

<Application connector="sailpoint.connector.RACFConnector" name="RACF" type="RACF">

 <Attributes>

 <Map>

 <entry key="permissionCustomizationRule" value="Perm Customize Rule"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

permission sailpoint.object.Permission Permission object (map), as built from

Rules in IdentityIQ Page 34 of 170

RACF record (line) directly
line String Individual record read from RACF

Outputs:

Argument Type Purpose
permission sailpoint.object.Permi

ssion
Updated permission object

Aggregation/Refresh Rules

Aggregation Rules are used during part of the aggregation process that occurs after the connector has created

valid ResourceObjects for the accounts or groups being aggregated, i.e. after the defined connector rules have

all been run. There are two types of aggregation: account and account group. All rules discussed in this section

except AccountGroupRefresh apply only to account aggregations; the AccountGroupRefresh rule applies only to

account group aggregation. A Refresh rule can be specified to run at the end of account aggregation but also

can also be run from an Identity Refresh task.

The rules described in this section can be used to perform these actions:

• Modify the ResourceObjects provided by the connector before they are correlated and aggregated

• Correlate ResourceObjects to existing Identities

• Control attribute population during creation new of Identities when a matching Identity is not found for

correlation, particularly when aggregating from an authoritative source

• Correlate manager Identities

• Customize the creation of Managed Entitlements during aggregation/refresh

• Customize an Identity before storing it (at the end of aggregation or during Identity Refresh)

• Customize account group attributes before storing (during account group aggregation)

Aggregation rules are described here in the order in which they are run when specified for a given aggregation

task.

ResourceObjectCustomization

Description

A ResourceObjectCustomization rule runs prior to any other aggregation rule to customize the resource object

provided by the connector before aggregation begins. Connectors that provide a transformation rule may not

need to use a ResourceObjectCustomization rule, since the transformation rule can modify the ResourceObject

as needed. However, many connectors directly provide a resource object, without the hooks for processing the

data through rules like a transformation rule, so this rule allows customization of the resource object before

IdentityIQ attempts to correlate the object to an Identity.

Rules in IdentityIQ Page 35 of 170

NOTE: Since the ResourceObjectCustomization rule runs for every ResourceObject provided by the connector,

time-intensive operations performed in it can have a negative impact on task performance. It runs even when

optimized aggregation has been specified, so customizations made by this rule can impact the optimization

decisions for the ResourceObject.

Definition and Storage Location

This rule is associated to an application in the UI in the application definition:

Applications -> Application Definition -> select existing or create new application -> Rules ->

Customization Rule

The reference to the rule is recorded in the Application XML:

<CustomizationRule>

 <Reference class="sailpoint.object.Rule" id="GUID ID" name="[Customization Rule

Name]"/>

</CustomizationRule>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

object sailpoint.object.ResourceObject A reference to the resource object built by
the connector

application sailpoint.object.Application A reference to the Application object
connector sailpoint.connector.abstractConnector A reference to the Connector object used

by this application

state java.util.Map A Map that can be used to store and share
data between executions of this rule
during a single aggregation run

Outputs:

Argument Type Purpose

object sailpoint.object.ResourceObject The modified resource object

NOTE: Even though the ResourceObject is passed to the rule where it can be modified directly, it must be

returned from the rule for its changes to be used by the rest of the aggregation process. Otherwise, changes

made to it inside the rule are not transferred back to the rest of the process.

Example

This example ResourceObjectCustomization rule performs the same function as the example Transformation

rule but would apply to an AD application that aggregated directly from AD (where the Transformation rule is

not availalbe) rather than through a delimited file.

import sailpoint.tools.xml.XMLObjectFactory;

Rules in IdentityIQ Page 36 of 170

List groups = (List)object.getAttribute("memberOf");

if (groups != null) {

 for (String group : groups) {

 if ((group != null) &&

 (group.startsWith("cn=Domain Admins"))) {

 object.put("isAdmin", true);

 }

 }

}

return object;

Correlation

Description

A Correlation Rule is used to select the existing Identity to which the aggregated account information should be

connected. Correlation can be specified on the application definition through a simple attribute match process

or it can be managed with a rule. If both are specified, the correlation rule supersedes the correlation attribute

specification and the simple attribute match will only be attempted if the rule does not return an Identity.

Every time an aggregation task runs, except when the optimize aggregation option has been selected or when

an account has been manually correlated to an Identity, the Identity to which the account should be connected

is reassessed; if the existing correlation is found to be incorrect or no longer applicable, that connection is

broken and a new one is established to the correct Identity.

If the correlation rule returns null or if the information returned from the correlation rule does not match to an

Identity (and the attribute-matching process also fails to select an Identity), a new Identity will be created (see

the IdentityCreation rule) and the account will be correlated to that Identity.

NOTE: In IdentityIQ 6.0, optimized aggregation is the default behavior, which means that no changes will be

made to a Link object if the corresponding managed system account has not changed. Consequently, accounts

will not be recorrelated to Identities in subsequent aggregations if nothing has changed on the application

account. (Other actions will be bypassed too, including attribute promotion, manager correlation, etc., but the

skipped recorrelation is usually the most noticeable effect of this setting.) Optimized aggregation can be turned

off by selecting the Disable optimization of unchanged accounts option in the aggregation task options or

specifying <entry key="noOptimizeReaggregation" value="true"/> in the TaskDefinition XML attributes map.

NOTE: Except as noted above with respect to optimized aggregation, the Correlation rule runs for every Link

created in the aggregation. Therefore, time-intensive operations performed in it can have a negative impact on

aggregation performance.

Definition and Storage Location

This rule is associated to an application in the UI in the application definition:

Applications -> Application Definition -> select existing or create new application -> Rules -> Correlation

Rule

The reference to the rule is recorded in the Application XML:

Rules in IdentityIQ Page 37 of 170

<CorrelationRule>

 <Reference class="sailpoint.object.Rule" id="GUID ID" name="[Correlation Rule

Name]"/>

</CorrelationRule>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

environment java.util.Map Map of arguments passed to the aggregation task

application sailpoint.object.Application A reference to the Application object
account sailpoint.object.ResourceObject A reference to the ResourceObject passed from the

connector

link sailpoint.object.Link A reference to the existing link identified based on the
resourceObject, if any

Outputs:

Argument Type Purpose
map java.util.Map Map that identifies an Identity; may contain any of the following

key-value pairs:
“identityName”, “[identity.name value]”
or
“identity”, [identity object]
or
“identityAttributeName”, “[attribute name]”
“identityAttributeValue”, “[attribute value]”
where the attribute value uniquely identifies one Identity

Examples

This example Correlation rule concatenates a firstname and lastname field from the account (resourceObject) to

build an Identity name for matching to an existing Identity.

Map returnMap = new HashMap();

String firstname = account.getStringAttribute("firstname");

String lastname = account.getStringAttribute("lastname");

if ((firstname != null) && (lastname != null)) {

 String name= firstname + "." + lastname;

 returnMap.put("identityName", name);

}

return returnMap;

This example correlation rule correlates the account to an Identity based on a combination of region and

employee ID from the application account, which together can be used to match the unique employee ID

recorded on the Identity.

import java.util.Map;

Rules in IdentityIQ Page 38 of 170

import java.util.HashMap;

String empNum = account.getStringAttribute("employeeId");

String region = account.getStringAttribute("region");

String empId = region + empNum;

Map returnMap = new HashMap();

if (empId != null) {

 returnMap.put("identityAttributeName", "empId");

 returnMap.put("identityAttributeValue", empId);

}

return returnMap;

IdentityCreation

Description

If the correlation rule cannot find an Identity that corresponds to the account, one must be created. By default,

the Identity Name is set to the display attribute from the resource object (or the identity attribute if display

attribute is null) and the Manager attribute is set to false. An IdentityCreation rule specifies any other Identity

attribute population, or any change to these two attribute values, based on the account data. It can also be used

to set values like a default IdentityIQ password for the Identity.

If the application is not an authoritative application, any Identities created for its accounts must later be

manually correlated to an authoritative Identity or the accounts will have to be recorrelated through an

automated process to connect them to the correct authoritative Identities.

IdentityCreation rules are most commonly specified for authoritative applications, since new Identities created

from those accounts are real, permanent Identities. However, they can also be used for non-authoritative

application accounts to set attributes that can make manual correlation easier.

An IdentityCreation rule can also optionally be specified as an Auto-Create User Rule in the IdentityIQ Login

Configuration, as described later in this document.

Definition and Storage Location

This rule is associated to an application in the UI through the application definition:

Applications -> Application Definition -> select existing or create new application -> Rules -> Creation

Rule

The reference to the rule is recorded in the Application XML:

<CreationRule>

 <Reference class="sailpoint.object.Rule" id="[Rule ID]" name="[Identity Creation

Rule Name]"/>

</CreationRule>

This rule type can also be associated to an account aggregation task:

Rules in IdentityIQ Page 39 of 170

Setup -> Tasks -> select existing or create new account aggregation task -> Optionally select a rule to

assign capabilities or perform other processing on new identities

When connected to a task, the rule ID is recorded in the attributes map of the TaskDefinition XML as the value

for the “creationRule” attribute:

<Attributes>

 <Map>

 <entry key="creationRule" value="402846023a65e596013a65e7a9fa0505"/>

 </Map>

</Attributes>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

environment java.util.Map Map of the task arguments for the aggregation task
application sailpoint.object.Application Reference to the application object from which the

account was read

account sailpoint.object.ResourceObject Reference to the ResourceObject representing the
account

identity sailpoint.object.Identity Reference to the Identity being created

Outputs: None. The identity object passed as parameter to the rule should be edited directly by the rule.

Example

This example IdentityCreation rule concatenates a firstname and lastname field from the account

(resourceObject) to create an Identity name (firstname.lastname), assigns an IdentityIQ capability based on the

account’s group membership, and sets a default password for the Identity. The identity parameter is directly

modified by the rule; no return value is expected.

import sailpoint.object.Identity;

import sailpoint.object.Capability;

import sailpoint.object.ResourceObject;

// change the name to a combination of firstname and lastname

String firstname = account.getStringAttribute("firstname");

String lastname = account.getStringAttribute("lastname");

String name = firstname + "." + lastname;

identity.setName(name);

// add capabilities based on group membership

List groups = (List)account.getAttribute("memberOf");

if ((groups != null) && (groups.contains("Administrator"))) {

 identity.add(context.getObjectByName(Capability.class,

"ApplicationAdministrator"));

}

identity.setPassword(“P@ssw0rd”);

Rules in IdentityIQ Page 40 of 170

ManagerCorrelation

Description

As with Identity correlation, manager correlation can be specified on the application definition through a simple

attribute match process or it can be managed with a rule. If a rule is defined, it is used to determine the correct

manager Identity; if no rule is defined, the Identity attribute match process is used to find the manager Identity.

A ManagerCorrelation Rule identifies an Identity’s manager based on an application account attribute (or

attributes) on the account being aggregated or refreshed.

The ManagerCorrelation rule runs as part of the identity refresh process that occurs either in an identity refresh

task or at the end of an account aggregation task, though the manager correlation option is hidden from the UI

on the aggregation task and is more often performed only as part of a refresh task. It runs before both the

managedAttributeCustomization rule(s) and the Refresh rule (if any).

NOTE: In general, manager correlation is bypassed if no change has been detected in the source attribute. This

is because manager correlation can be time-intensive activity that negatively impacts aggregation/refresh

performance. To force manager correlation to occur for every Identity, even if it has not changed, set the

alwaysRefreshManager attribute to “true” in the task attributes map. When this option is set, time-intensive

operations performed in the ManagerCorrelation rule can have a negative impact on task performance.

Definition and Storage Location

This rule is associated to an application in the UI in the application definition:

Applications -> Application Definition -> select existing or create new application -> Rules -> Manager

Correlation Rule

The reference to the rule is recorded in the Application XML:

<ManagerCorrelationRule>

 <Reference class="sailpoint.object.Rule" id="GUID ID" name="[Manager Correlation

Rule Name]"/>

</ManagerCorrelationRule>

The promoteAttributes option must be turned on for the aggregation or refresh task for manager correlation to

run during the task. The alwaysRefreshManager option forces manager refresh to occur even when the source

link’s attribute value has not changed; alternatively, the noManagerCorrelation option bypasses all manager

correlation regardless of whether or not the source attribute value has changed.

<entry key="promoteAttributes" value="true"/>

<entry key="alwaysRefreshManager" value="true"/>

<entry key="noManagerCorrelation" value="true"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

Rules in IdentityIQ Page 41 of 170

environment java.util.Map Arguments passed to the aggregation task
application sailpoint.object.Application A reference to the Application object

instance String Application instance name (if not null)

connector sailpoint.connector.Abstrac
tConnector

A reference to the connector object used by
this application instance

link sailpoint.object.Link A reference to the account link

managerAttributeValue String Manager attribute value being used to
correlated to an Identity

Outputs:

Argument Type Purpose

map java.util.Map Map that identifies the manager’s Identity; may contain
any of the following:
“identityName”, “[identity.name value]”
or
“identity”, [Identity object]
or
“identityAttributeName”, “[attribute name]”
“identityAttributeValue”, “[attribute value]”
where the attribute value uniquely identifies one Identity

Example

This example ManagerCorrelation rule is provides the same functionality as using the attribute-correlation

option on the Correlation tab of the application definition; an installation might specify this as a rule if they have

a preference for rules over UI configurations or for other organization-specific reasons.

import java.util.Map;

import java.util.HashMap;

Map returnMap = new HashMap();

if (managerAttributeValue != null) {

 returnMap.put("identityAttributeName", "empId");

 returnMap.put("identityAttributeValue", managerAttributeValue);

} else {

 returnMap.put("identityName", "");

}

return returnMap;

This example ManagerCorrelation rule provides a more complex demonstration of this rule type. The Identity

name is a 7-character employee ID that is the prefix to accountIDs on the application from which Managers are

correlated, so only the first 7 characters of the manager’s accountID value need to be returned for the

correlation.

// Account IDs contain the 7 character employee ID plus an app-specific

// suffix. Strip all accounts down to the first 7 characters for

// Identity name and use that to correlate to manager.

Rules in IdentityIQ Page 42 of 170

import java.lang.String;

import java.util.Map;

import java.util.HashMap;

Map returnMap = new HashMap();

String name = link.getStringAttribute("MgrID");

if (name != null) {

 name = name.trim();

 if (7 < name.length()) {

 name = name.substring(0,7);

 }

 name = name.toLowerCase();

 returnMap.put("identityName", name);

}

return returnMap;

ManagedAttributeCustomization / ManagedAttributePromotion

Description

The ManagedAttributeCustomization rule for an application is run by an aggregation task or an identity refresh

task for which the “Promote managed attributes” option selected. This rule can set values on managed

attributes as they are promoted for the first time, and it only runs when a managed attribute is initially created

through promotion (i.e. on create, not on update). The rule directly modifies the ManagedAttribute passed to it,

so it does not have a return value.

This rule type was renamed in IdentityIQ version 6.2 to ManagedAttributePromotion. The new name is more

descriptive of when this rule is run and how it should be used.

The ManagedAttributeCustomization/Promotion Rule runs during a refresh process that occurs either in an

identity refresh task or at the end of an account aggregation task. Managed attributes are promoted after

identity attributes are refreshed (including manager correlation) but before any Refresh rule specified for the

task is run.

Definition and Storage Location

This rule is associated to an application in the UI through the application definition.

Applications -> Application Definition -> select existing or create new application -> Rules -> Managed

Entitlement Customization Rule

The reference to the rule is recorded in the Application XML:

<ManagedAttributeCustomizationRule>

 <Reference class="sailpoint.object.Rule" id="GUID ID" name="[Managed Attribute

Customization Rule Name]"/>

</ManagedAttributeCustomizationRule>

Rules in IdentityIQ Page 43 of 170

The promoteManagedAttributes option must be turned on for the aggregation or refresh task for managed

attribute promotion and the ManagedAttributeCustomization rule to run during the task.

<entry key="promoteManagedAttributes" value="true"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

attribute sailpoint.object.ManagedAttribute A reference to the managed attribute being created
application sailpoint.object.Application A reference to the application object to which this

managed attribute belongs

state java.util.Map Map in which any data can be stored; available to the
rule in subsequent rule executions within the same
task so expensive data (requiring time-intensive
lookups) can be saved and shared between rule
executions.

Outputs: None; the ManagedAttribute object passed as parameter to the rule should be edited directly by the

rule.

Example

This example ManagedAttributeCustomization rule sets the owner as the application owner and sets a

description for the managed attribute.

import sailpoint.object.*;

import java.util.Locale;

// set the owner to the app owner.

Identity owner = null;

if ((null != application) && (null != application.getOwner())) {

 owner = application.getOwner();

} else {

 owner = getObjectByName(Identity.class,”spadmin”);

}

attribute.setOwner(owner);

//make attribute requestable

attribute.setRequestable(true);

String description = "friendly description";

// In 6.0+, use this logic to set descriptions for managed attributes

attribute.addDescription(Locale.US.toString(), description);

// In versions prior to 6.0, set description like this:

attribute.setExplanation("default", description);

Rules in IdentityIQ Page 44 of 170

Refresh

Description

A Refresh rule runs at the end of the Identity Refresh process, both during an Identity Refresh task and at the

end of an Aggregation task. It allows custom manipulation of Identity attributes while the Identity is being

refreshed. Refresh rules are most commonly used in manually-executed refresh tasks configured for data

cleanup when erroneous aggregation configurations have resulted in unintended data consequences on

Identities. However, they can also be used in normal refresh or aggregation tasks to set attributes (usually

custom attributes).

NOTE: IdentityIQ 6.0 introduced a second option for running a Refresh rule at the beginning of the Identity

Refresh process in addition to the end. To have the rule run at the beginning, specify it as a “preRefreshRule”,

as shown in the Definition and Storage Location section below. This option will rarely be used but is available if

attribute values need to be manipulated before the Identity and its associated links and roles are refreshed.

NOTE: Since the Refresh rules run for every Identity involved in the aggregation or refresh task, time-intensive

operations performed in it can have a negative impact on task performance.

Definition and Storage Location

This rule is specified as a task argument to a refresh task but can only be added to the task XML, not through the

UI.

The rule name is recorded in the taskDefinition XML as:

<entry key= "refreshRule" value = "[Refresh Rule Name]" />

<entry key= "preRefreshRule" value = "[Refresh Rule Name]" />

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

environment java.util.Map Arguments passed to the aggregation or refresh task
identity sailpoint.object.Identity Reference to the Identity object being refreshed

Outputs: None. The identity object passed as parameter to the rule should be edited directly by the rule.

Example

This example Refresh rule is used to reset passwords for all refreshed Identities except the Administrator to a

default password. It also sets a custom attribute to record the date of the reset on the Identity.

import sailpoint.object.Identity;

import sailpoint.object.Capability;

String name = identity.getName();

if (!name.equals("spadmin")) {

Rules in IdentityIQ Page 45 of 170

 identity.setPassword("xyzzy");

 identity.setAttribute("pwdResetDate", new Date());

}

This example Refresh rule removes links for a specific application from the Identities and from the system.

import sailpoint.object.Identity;

import sailpoint.object.Link;

import java.util.*;

import sailpoint.api.*;

sailpoint.api.Terminator termin = new sailpoint.api.Terminator(context);

if (identity != null) {

 List listOfLinks=identity.getLinks();

 if(listOfLinks!=null)

 {

 for(int index=0; index<listOfLinks.size();index++)

 {

 Link link =(Link)listOfLinks.get(index);

 String applicationName=link.getApplicationName();

 if "PRISM".equals(applicationName) {

 identity.remove(link);

 context.removeObject(link);

 }

 }

 }

 }

This example Refresh rule runs as a preRefreshRule to turn off the negative assignment flag for roles that have

been revoked by a certification. This allows them to be reassigned by an assignment rule running during the

refresh. Other conditions could be added to restrict it to only certain roles or certain Identities. (This use case

would be unusual, since most organizations want certification decisions to supersede automatic assignments.)

import sailpoint.object.RoleAssignment;

if (identity != null) {

 List roleAssignments = identity.getRoleAssignments();

 Boolean flag = false;

 if (roleAssignments != null) {

 for (RoleAssignment roleAssignment : roleAssignments) {

 if (roleAssignment.isNegative()){

 roleAssignment.setNegative(flag);

 roleAssignment.setSource("Rule");

 }

 }

 }

}

AccountGroupRefresh/GroupAggregationRefresh

The AccountGroupRefresh rule type was renamed in version 6.2 to GroupAggregationRefresh to more

generically apply to all group object aggregation processes.

Description

An AccountGroupRefresh or GroupAggregationRefresh rule runs during an Account Group Aggregation task. It

allows custom manipulation of group attributes while the group is being refreshed (on both create and update).

Rules in IdentityIQ Page 46 of 170

NOTE: This rule runs for every group object involved in the aggregation task, so time-intensive operations

performed in it can have a negative impact on task performance.

Definition and Storage Location

This rule is specified as a task argument to an account group aggregation task. In earlier product versions, it

could only be added to the task’s XML, but version 6.4 introduced a UI task argument for it.

Setup -> Tasks -> select existing or create new Account Group Aggregation task -> Group Aggregation

Refresh Rule

The rule name is recorded in the taskDefinition XML as:

<entry key=”accountGroupRefreshRule” value =”[Account Group Refresh Rule Name]”>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

environment java.util.Map Arguments passed to the aggregation or
refresh task

obj sailpoint.object.ResourceObject Reference to the resourceObject from the
application

accountGroup sailpoint.object.ManagedAttribute Reference to the account group being
refreshed

groupApplication sailpoint.object.Application Reference to the application being
aggregated

Outputs:

Argument Type Purpose

accountGroup sailpoint.object.ManagedAttribute The refreshed (modified) account group object

Example

This example AccountGroupRefresh/GroupAggregationRefresh rule extracts the first DN listed in the account

group’s “owner” attribute and parses the user name out of that string to identify the account group owner. It

sets the Identity corresponding to that name as the account group owner and returns the account group.

import java.util.List;

import java.util.ArrayList;

import sailpoint.object.ResourceObject;

import sailpoint.object.AccountGroup;

import sailpoint.object.Identity;

String ownerDN = null;

String ownerName = null;

Identity identity = null;

Object owner = obj.getAttribute("owner");

Rules in IdentityIQ Page 47 of 170

if(owner instanceof List){

 ownerDN = (String)owner.get(0);

}else{

 ownerDN = (String)owner;

}

if(ownerDN != null){

 ownerName = ownerDN.substring(ownerDN.indexOf("uid=")+4,ownerDN.indexOf(","));

}

if (null != ownerName) {

 identity = context.getObjectByName(Identity.class, ownerName);

}

if (null != identity) {

 accountGroup.setOwner(identity);

}

return accountGroup;

AccountSelector

Description

The AccountSelector rule was introduced in IdentityIQ version 6.3 to support provisioning of entitlements

through role assignments when a user holds more than one account on the target application. It provides the

logic for selecting a target account for provisioning entitlements for an IT role (or any role type with an

entitlement profile).

Account selector rules run during an identity refresh task with the Provision assignments option selected, when

a business role is assigned which has required IT roles that specify these rules. This rule must provide the logic

for choosing the account to which the entitlement should be provisioned. Account selector rules also run to

chose a target account when a role is requested through Lifecycle Manager; if it does not select a target

account, the LCM requester is prompted to select one from a list in the UI.

One or more account selector rules can be specified for each IT role; the system supports a global rule which

applies to all applications involved in the role profile as well as a rule per application.

Definition and Storage Location

AccountSelector rules can be selected and specified through the Role Editor on an IT role (or any role type that

supports automatic detection with profiles).

Setup -> Roles -> edit or create an IT role -> Provisioning Target Account Selector Rules section ->

General Rule or rule per application

The rules are referenced in the Bundle XML inside the attributes map entry for key “accountSelectorRules”.

Application-specific rules also include an ApplicationRef pointing to the application itself.

<entry key="accountSelectorRules">

 <value>

 <AccountSelectorRules>

 <ApplicationAccountSelectorRules>

Rules in IdentityIQ Page 48 of 170

 <ApplicationAccountSelectorRule>

 <ApplicationRef>

 <Reference class="sailpoint.object.Application"

id="ff8080814612b067014612b07cbe0005" name="Financials"/>

 </ApplicationRef>

 <RuleRef>

 <Reference class="sailpoint.object.Rule"

id="ff808081461af94d01461fdc6d1c0233" name="financials link selector"/>

 </RuleRef>

 </ApplicationAccountSelectorRule>

 </ApplicationAccountSelectorRules>

 </AccountSelectorRules>

 </value>

</entry>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

source String
(sailpoint.object.Source
enum value)

Enum value defining the source of the
request (UI, LCM, Task, etc.)

role sailpoint.object.Bundle The IT role being provisioned
identity sailpoint.object.Identity The Identity to whom the role is being

provisioned

application sailpoint.object.Application The Target application on which the
entitlements will be provisioned

links ArrayList of
sailpoint.object.Link objects

List of all available links held by the Identity

isSecondary Boolean True if this is not the first assignment of this
role to this user

project sailpoint.object.Provisioning
Project

Provisioning project for the provisioning
request

accountRequest sailpoint.object.AccountReq
uest

Account request containing details to be
provisioned to the selected target account

allowCreate Boolean True if account creation is allowed (i.e. if the
system can accept and act upon the return
from the rule of a new Link with no
nativeIdentity

Outputs:

Argument Type Purpose

selection sailpoint.object.Link
or String

Can return any of these:

• one of the available Links (accounts) currently
held by the the Identity

• a Link with a null nativeIdentity value – this tells
the system to create a new Link (any values on the
returned Link are ignored and the Link is created
based on the role and application provisioning

Rules in IdentityIQ Page 49 of 170

policies)

• a null value – causes the system to prompt the
requester for an account selection

• the string “prompt” – tells the system to prompt
the requester for an account selection

The difference between null and “prompt” is that
“prompt” forces the prompting to occur per IT role so that
if there are multiple IT roles involved in the role
assignment which all target the same application, a
separate target account can be specified for each IT role.
Null causes the system to obey configuration settings as
they have been specified in LCM and on the role itself, so
the prompting may be at the IT role level or at the
business role level, depending on that configuration.

Example

This is an example AccountSelector rule which acts differently depending on the source of the request. For

requests with a source of UI or LCM, it returns a null so the user will be prompted to select an account in the UI.

Otherwise, it look for and returns the first non-privileged account Link found, if one exists for the user. (The

app2_privileged attribute on the target application designates whether the account is privileged or not.)

import sailpoint.object.Link;

if ("UI".equals(source) || "LCM".equals(source))

 return null;

if (null != links) {

 for (Link link : links) {

 if ("false".equals(link.getAttribute("app2_privileged"))) {

 return link;

 }

 }

}

return null;

Certification Rules

Certification Rules run during the certification creation process and during the certification lifecycle. These rules

allow customization of behavior around the processing of the certification including:

• exclusion of items from a certification

• assignment of certifiers

• population of custom fields on a certification entity or item

• management of activities that occur during certification phase changes, including closing or second-level

signoff

Rules in IdentityIQ Page 50 of 170

• control of processing when items are marked complete

• handling of escalations

• management of certification events (triggering and determining identities to which it applies)

Rules used during the Certification process include:

• CertificationExclusion

• CertificationPreDelegation

• Certifier

• CertificationItemCustomization

• CertificationEntityCustomization

• CertificationPhaseChange

• CertificationEntityRefresh

• CertificationEntityCompletion

• CertificationItemCompletion

• CertificationAutomaticClosing

• CertificationSignOffApprover

• WorkItemEscalationRule

• IdentityTrigger

• IdentitySelector

NOTE: One of the input parameters passed to most certification rules is the CertificationContext, which is an

interface used to create the certification. This was more necessary in early versions of IdentityIQ, when the

certification specification details were not readily accessible through the certification itself. Currently, this

parameter will generally not be used in custom rules; attributes available through it are more easily accessed

through the Certification and its connected (parent and child) objects.

CertificationExclusion

Description

A CertificationExclusion rule is used to exclude specific items from a Certification based on an evaluation of the

entity being certified or the certifiable items that are part of the certification. The certificationEntity depends on

the type of certification being run and can be a bundle (role), account group, or Identity. CertificationItems are

dependent on the entity and the certification type. For example, for Identities, items can be roles or

entitlements; for account groups, they can be permissions or members. For roles, they are required/permitted

roles, entitlements, or members.

The rule is passed two lists: items and itemsToExclude. Items includes all CertificationItems belonging to the

CertificationEntity that are identified for inclusion in the certification. The rule must remove items from that list

to exclude them from the certification and must put them in the itemsToExclude list to make them appear in the

Exclusions list for the certification.

NOTE: This rule runs for each CertificationEntity identified by the certification specification, so complex

processing included in this rule can significantly impact the performance of certification generation. For

Rules in IdentityIQ Page 51 of 170

continuous certifications, this rule runs each time the certification returns to the CertificationRequired state and

the Refresh Continuous Certifications task runs.

Definition and Storage Location

This rule is specified in the UI during creation of a new certification. It is an option on the Advanced page of the

specification.

Setup -> Certifications -> Create new certification (any type) -> Advanced -> Exclusion Rule

The exclusion rule name is recorded in the attributes map in the CertificationDefinition XML.

<entry key="exclusionRuleName" value="[CertificationExclusion Rule Name"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

entity

sailpoint.object.AbstractCertifiabl

eEntity

The entity being considered for certification: a
Bundle, Account Group, or Identity object

certification sailpoint.object.Certification The current certification object being
constructed

certContext sailpoint.object.CertificationCont
ext

The CertificationContext interface used in
generating this certification (rarely used within
rules; the values accessible through this are also
available on the certification or
certificationDefinition)

items List <sailpoint.object.Certifiable> List of Certifiable items for a given identity; this
rule must remove items from this list to prevent
them from being certified

itemsToExclude List <sailpoint.object.Certifiable> List of Certifiable items to be excluded from the
certification; this rule must add items to this list
to have them included in the Exclusions list
visible from the certification after it is generated

state java.util.Map Map in which any data can be stored; shared
across multiple rules in the certification
generation process

identity sailpoint.object.AbstractCertifiabl

eEntity

A second copy of the AbstractCertifiableEntity if
it is an Identity object; this is passed in for
backward compatibility only; newly written rules
should reference the entity argument instead

Outputs:

Argument Type Purpose

Rules in IdentityIQ Page 52 of 170

explanation String An optional explanation describing why the entity’s items were
excluded; this is shown on the Exclusions list for each item
excluded from the certification; if rule excludes items for different
entities for different reasons, this can identify the applicable
exclusion conditions when the exclusion list is examined

Example

This example rule checks for inactive identities or identities identified as “Contractors” and removes all

certification items if either check evaluates as true.

import sailpoint.object.Identity;

log.trace("Entering Exclusion Rule.");

String explanation = "";

Identity currentUser = (Identity) entity;

if (currentUser.isInactive()) {

 log.trace("Inactive User: " + currentUser.getDisplayName());

 log.trace("Do not certify.");

 itemsToExclude.addAll(items);

 items.clear();

 explanation = "Not certifying inactive users";

} else if (currentUser.getAttribute("status").equals("Contractor")) {

 log.trace("Identity is Contractor: " + currentUser.getDisplayName());

 log.trace("Do not certify.");

 itemsToExclude.addAll(items);

 items.clear();

 explanation = "Not certifying contractors";

} else {

 log.trace("Active Employee: " + currentUser.getDisplayName());

 log.trace("Do certify.");

 }

return explanation;

CertificationPreDelegation

Description

A CertificationPreDelegation rule runs during certification generation. It runs once for every CertificationEntity

to determine whether the entity should be pre-delegated to a different certifier. This rule can also be used to

reassign entities to a different certifier. The difference between reassignment and delegation is that reassigned

certifications do not return to the original certifier for review and approval when the assignee has completed

signoff and delegated items do.

NOTE: This rule runs for each entity identified by the certification specification, so complex processing included

in this rule can significantly impact the performance of certification generation. For continuous certifications,

this rule runs each time the certification returns to the CertificationRequired state and the Refresh Continuous

Certifications task runs.

Rules in IdentityIQ Page 53 of 170

Definition and Storage Location

This rule is specified in the UI during creation of a new certification. It is an option on the Advanced page of the

specification.

Setup -> Certifications -> Create new certification (any type) -> Advanced -> Pre-Delegation Rule

The PreDelegation rule name is recorded in the attributes map in the CertificationDefinition XML.

<entry key="preDelegationRuleName" value="[CertificationPreDelegation Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

certification sailpoint.object.Certification Reference to the Certification object being created

entity sailpoint.object.Certification
Entity

Reference to the CertificationEntity object being
considered for predelegation

certContext sailpoint.api.CertificationCo
ntext

Reference to the CertificationContext interface being
used to create this certification (rarely used within
rules; the values accessible through this are also
available on the certification or certificationDefinition)

state java.util.Map Map in which any data can be stored; shared across
multiple rules in the certification generation process

Outputs:

Argument Type Purpose

map java.util.Map A map of values including the following entries:

• recipient: Identity object to whom the
certificationEntity should be delegated (recipient
or recipientName must be specified)

• recipientName: (string) name of the recipient
identity (alternative to recipient)

• description: (string) description for delegation (if
not provided, is generated as “Certify
[CertificationEntityName]”)

• comments: (string) comments for the recipient of
the delegation/reassignment

• certificationName: (String) name of the new
certification to which this entity is being
reassigned (only needed for reassignment, not
delegation)

• reassign: (Boolean) flag indicating whether this is a
reassignment or delegation (true=>reassignment)

Rules in IdentityIQ Page 54 of 170

Example

This example PreDelegation rule delegates the certification responsibility in a manager certification to each

employee who reports to the manager. Each employee first evaluates and certifies their own access; then their

decisions are returned to the manager for review and approval or modification.

import sailpoint.object.Identity;

Map results = new HashMap();

String theCertifiee = entity.getIdentity();

results.put("recipientName", theCertifiee);

results.put("description", "Please certify your own access");

results.put("comments", "This is the access currently granted to you: " + theCertifiee

+ ". Please determine whether it is appropriate for your job function.";

return results;

Certifier

Description

The Certifier rule is used only with Advanced certifications that are certifying members of GroupFactory-

generated Groups. It identifies the certifier for each Group. This rule runs once for each Group generated from

the specified GroupFactory; if the certification includes more than one GroupFactory, a separate rule can be

specified for each GroupFactory.

Definition and Storage Location

The Certifier rule is specified in the UI during creation of a new certification. It is an option on the Basic page of

an Advanced Certification specification.

Setup -> Certifications -> Create new Advanced certification -> Basic -> select Group Factory to Certify ->

Certifier Rule

The rule is recorded in the “factoryCertifierMap” within the CertificationDefinition’s attributes map. The key is

the ID of the groupFactory and the value is the name of the Certifier rule applied to groups from that

groupFactory:

 <entry key="factoryCertifierMap">

 <value>

 <Map>

 <entry key="402846023a65e596013a65e719ff029f" value="[Certifier Rule Name]"/>

 </Map>

 </value>

 </entry>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

Rules in IdentityIQ Page 55 of 170

factory sailpoint.object.GroupFactory The groupFactory object that created the group(s)
being certified

group sailpoint.object.GroupDefinition The group object whose members are being assigned a
certifier by the rule

state java.util.Map Map in which any data can be stored; shared across
multiple rules in the certification generation process

Outputs:

Argument Type Purpose

certifiers String,
sailpoint.object.Identity,
list of strings or list of
Identities

Identifies the Certifier(s) for each group created from
the groupFactory; can return an identity name, a CSV
list of identity names, an Identity object, a List of
Identity objects, or a List of Identity names

Example

This example Certifier rule assigns the group owner as the Certifier for each group. If no group owner is

specified, it assigns the certification to the Administrator. Note that the owner is returned as an Identity object

and the Administrator is returned as a string Identity name; this is possible due to the flexible nature of this

rule’s return value.

import sailpoint.object.Identity;

Identity groupOwner = group.getOwner();

if (groupOwner != null) {

 return groupOwner;

} else {

 return "spadmin";

}

CertificationEntityCustomization

Description

A CertificationEntityCustomization rule runs when a certification is generated. It allows the CertificationEntity to

be customized; for example, default values can be calculated for the custom fields. This rule is generally used

only when custom fields have been added to CertificationEntity for the installation. It runs for every

CertificationEntity in a certification.

NOTE: The CertificationItemCustomization rule (discussed next) runs for each certifiable item attached at a

certificationEntity before that entity’s CertificationEntityCustomization rule runs.

Definition and Storage Location

The CertificationEntityCustomization rule is specified in the System Configuration XML or can be specified in the

XML of individual CertificationDefinitions. If specified in the System Configuration, it runs for every certification

created. If specified in a CertificationDefinition (by editing the XML directly after it is generated based on the UI

Rules in IdentityIQ Page 56 of 170

certification specification), it applies only to certifications generated from that definition. In either case, it is

added to the attributes map.

<entry key="certificationEntityCustomizationRule" value="[Cert Entity Customization

Rule Name]"/>

This rule cannot be written through the UI Rule Editor; it must be written in XML and imported into the system.

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
certification sailpoint.object.Certification Reference to the Certification to which the

item is being added

certifiableEntity sailpoint.object.AbstractCertifiableEntity Reference to the AbstractCertifiableEntity
from which the certifiable was retrieved
(Bundle, Identity, or AccountGroup object)

entity sailpoint.object.CertificationEntity Reference to the certificationEntity to be
customized

certContext sailpoint.api.CertificationContext CertificationContext being used to build the
certification (rarely used in a rule)

state java.util.Map A Map that can be used to store and share
data between executions of this rule during a
single certification generation process; rules
executed in the same certification generation
share this state map, allowing data to be
passed between them

Outputs: None. The CertificationEntity object passed as parameter to the rule should be edited directly by the

rule.

Example

This example CertificationEntityCustomization rule sets default values for the custom attributes defined for

CertificationEntity if the certifiableEntity is an Identity and Identity is part of the Accounting department.

if (certifiableEntity instanceof Identity) {

 Identity identity = (Identity) certifiableEntity;

 if ("Accounting".equals(identity.getAttribute("department")) {

 entity.setCustom1("custom attribute 1");

 entity.setCustom2("custom attribute 2");

 Map customMap = new HashMap();

 customMap.put("LevelNum", 42);

 entity.setCustomMap(customMap);

 }

} else {

 return null;

}

Rules in IdentityIQ Page 57 of 170

CertificationItemCustomization

Description

A CertificationItemCustomization rule is run when a certification is generated. It allows the CertificationItem to

be customized; for example, default values can be calculated for the custom fields. This rule is generally used

only when custom fields have been added to CertificationItem for the installation.

NOTE: The CertificationItemCustomization rule runs for each certifiable item attached at a certificationEntity

before that entity’s CertificationEntityCustomization rule (discussed above) runs.

Definition and Storage Location

The CertificationItemCustomization rule is specified in the System Configuration XML or can be specified in the

XML of individual CertificationDefinitions. If specified in the System Configuration, it runs for every certification

created. If specified in a CertificationDefinition (by editing the XML directly after it is generated based on the UI

certification specification), it applies only to certifications generated from that definition. In either case, it is

added to the attributes map.

<entry key="certificationItemCustomizationRule" value="[Cert Item Customization Rule

Name]"/>

This rule cannot be written through the UI Rule Editor; it must be written in XML and imported into the system.

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

certification sailpoint.object.Certification Reference to the Certification to which
the item is being added

certifiable sailpoint.object.Certifiable Reference to the Certifiable item being
created into a CertificationItem

certifiableEntity sailpoint.object.AbstractCertifiableEntity Reference to the
AbstractCertifiableEntity from which the
certifiable was retrieved (Bundle,
Identity, or AccountGroup object)

item sailpoint.object.CertificationItem Reference to the certificationItem to be
customized

certContext sailpoint.api.CertificationContext CertificationContext being used to build
the certification (rarely used in a rule)

state java.util.hashMap A Map that can be used to store and
share data between executions of this
rule during a single certification
generation process; rules executed in the
same certification generation share this
state map, allowing data to be passed
between them

Rules in IdentityIQ Page 58 of 170

Outputs: None. The CertificationItem object passed as parameter to the rule should be edited directly by the

rule.

Example

This example CertificationItemCustomization rule checks whether the certifiableEntity is an Identity. If it is, it

uses a custom identity attribute value to look up an entry in the state map or it runs a query to populate the

state map (this is populated into state so this query only needs to run once for the whole certification). It then

sets a custom attribute on the CertificationItem based on that cross-reference.

if (certifiableEntity instanceof Identity) {

 if (state = null) {

 // Load levelCode position mappings into state from a Custom object.

 state = new HashMap();

 Custom mappings = context.getObjectByName(Custom.class,

 "LevelCodePositionMappings");

 state.putAll(mappings.getAttributes());

 }

 Identity ident = (Identity) certifiableEntity;

 String levelCode = ident.getAttributes("levelCode");

 String level = state.get(levelCode);

 item.setCustom1(level);

}

This example rule assumes that a custom object has been imported into IdentityIQ that contains the level code

position mappings; it might look like this:

 <Custom name="LevelCodePositionMappings">

 <Attributes>

 <Map>

 <entry key="302" value="Supervisor"/>

 <entry key="443" value="Manager"/>

 </Map>

 </Attributes>

 </Custom>

CertificationPhaseChange

Description

CertificationPhaseChange rules allow custom processing to occur at the beginning of any new certification

phase. They are connected to the certification definition as the Period Enter Rule for any certification phase

(e.g. Active Period Enter Rule, Challenge Period Enter Rule, etc.). Continuous certifications provide the rules

with both the Certification and the CertificationItem, since individual items are phased separately for continuous

certifications. Normal certifications only provide the Certification, since the whole certification is phased as a

unit.

CertificatonPhaseChange rules are commonly used for actions like:

• creating a data snapshot to send to an external system

• sending an update or report to a certification monitoring team

Rules in IdentityIQ Page 59 of 170

• (Active Period Enter Rule) reporting on how long it took a certification to generate by comparing rule-

fire time to certification start timestamp)

• (Active Period Enter Rule) pre-deciding certain line items in the certification (can be overridden during

review)

• (Challenge Period Enter Rule) emailing managers that they should be expecting challenges to

revocations

Definition and Storage Location

CertificationPhaseChange rules are specified in the UI during creation of a new certification specification. These

are options on the Lifecycle page of any certification specification.

Setup -> Certifications -> Create new certification (any type) -> Lifecycle -> ___ Period Enter Rule

The rule is recorded in the CertificationDefinition’s attributes map according to the phase with which it is

associated.

Active: <entry key="certificationActivePhaseEnterRule" value="[CertificationPhaseChange
Rule Name]"/>

Challenge: <entry key="certificationChallengePhaseEnterRule"… />
Remediation: <entry key="certificationRemediationPhaseEnterRule"… />
End: <entry key="certificationFinishPhaseEnterRule"… />

In addition to the Period Enter Rules that are offered in the UI, period exit rules can be specified for the Active,

Challenge, and Remediation phases using these entries in the Certification XML:

Active: <entry key="certificationActivePhaseExitRule"… />

Challenge: <entry key="certificationChallengePhaseExitRule"… />

Remediation: <entry key="certificationRemediationPhaseExitRule"… />

NOTE: For traditional certifications, each of these rules runs once per certification. For continuous certifications,

these each run once per certificationItem each time the certification item enters the corresponding phase; this

includes the Active Period Enter Rule, which runs once per certificationItem when it reaches the

CertificationRequired state.

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

certification sailpoint.object.Certification Certification object undergoing phase
transition

certificationItem sailpoint.object.CertificationItem CertificationItem undergoing phase
transition; only passed in for transitions
of continuous certifications, where
certificationItems are phased individually

previousPhase sailpoint.object.Certification.Phase
enumeration

phase being exited (may be null)

Rules in IdentityIQ Page 60 of 170

(Staged, Active, Challenge,
Remediation, End)

nextPhase sailpoint.object.Certification.Phase
enumeration

phase to which the certification is being
transitioned

Outputs: None. This rule is expected to act directly on the certification or certificationItem passed to the rule.

Example

This example End Phase Enter Rule (an instance of a CertificationPhaseChange Rule) looks at all

certificationItems as the certification enters the End Phase and automatically rejects, causing remediation of, all

undecided certificationItems. It then invokes Certificationer methods to refresh and sign the certification.

import sailpoint.object.Certification;

import sailpoint.object.CertificationAction;

import sailpoint.object.CertificationEntity;

import sailpoint.object.CertificationItem;

import sailpoint.api.SailPointContext;

import sailpoint.api.Certificationer;

import sailpoint.api.certification.RemediationManager;

import sailpoint.tools.GeneralException;

import sailpoint.tools.Message;

import sailpoint.tools.Util;

private void rejectUnfinished(CertificationItem certificationItem)

 throws GeneralException {

 List children = certificationItem.getItems();

 if (Util.isEmpty(children)) {

 // a leaf item, must have a status, but only reject if there

 // is not already a decision.

 if ((null == certificationItem.getAction()) || (null ==

certificationItem.getAction().getStatus())) {

 RemediationManager remedMgr = new RemediationManager(this.context);

 RemediationManager.ProvisioningPlanSummary planSummary =

remedMgr.calculateRemediationDetails(certificationItem,

 CertificationAction.Status.Remediated);

 CertificationAction.RemediationAction remediationAction = planSummary !=

null ? planSummary.getAction() : null;

 certificationItem.remediate(context, null, null, remediationAction, null,

null, null, null, null);

 }

 }

 else {

 // a parent item, does not need a status

 List childItems = certificationItem.getItems();

 if (childItems != null) {

 for (int i=0; i<childItems.size(); ++i) {

 CertificationItem childItem = (CertificationItem) children.get(i);

 rejectUnfinished(childItem);

 }

 }

 }

Rules in IdentityIQ Page 61 of 170

}

private void showErrorsIfExists(List errors) {

 if (!Util.isEmpty(errors)) {

 Iterator errorsIterator = errors.iterator();

 while (errorsIterator.hasNext()) {

 Message error = (Message) errorsIterator.next();

 System.out.println(error.getLocalizedMessage());

 }

 }

}

private Certification refreshCert(SailPointContext context, Certificationer

certificationer, Certification certification)

 throws GeneralException {

 List messages = certificationer.refresh(certification);

 showErrorsIfExists(messages);

 return context.getObjectById(Certification.class, certification.getId());

}

// Main rule logic starts here

List entities = certification.getEntities();

if (entities != null) {

 Iterator entitiesIterator = entities.iterator();

 while (entitiesIterator.hasNext()) {

 CertificationEntity entity = (CertificationEntity) entitiesIterator.next();

 List items = entity.getItems();

 if (items != null) {

 Iterator itemsIterator = items.iterator();

 while(itemsIterator.hasNext()) {

 CertificationItem childItem = (CertificationItem) itemsIterator.next();

 rejectUnfinished(childItem);

 }

 }

 }

}

Certificationer certificationer = new Certificationer(context);

certification = refreshCert(context, certificationer, certification);

List errors = certificationer.sign(certification, null);

showErrorsIfExists(errors);

CertificationEntityRefresh

Description

The CertificationEntityRefresh rule runs when any certificationEntity is refreshed. Refresh of a certificationEntity

occurs when decisions made for that entity or any of its certificationItems is saved. The rule’s logic could, for

example, be used to copy a custom field value from one item to another or from the CertificationEntity down to

its certificationItems.

This rule was created to permit custom logic around CertificationItem extended attributes. In practice these

extended attributes and this rule type are seldom used.

Rules in IdentityIQ Page 62 of 170

Definition and Storage Location

The certification entity refresh rule is specified in the System Configuration XML or can be specified in the XML

of individual CertificationDefinitions. If specified in the System Configuration, it is applied to every certification,

so it runs every time a certification entity is refreshed on any certification of any type. If specified in a

CertificationDefinition (by editing the XML directly after it is generated based on the UI certification

specification), it applies only to certifications generated from that definition. In either case, it is added to the

attributes map.

<entry key="certificationEntityRefreshRule" value="[Cert Entity Refresh Rule Name]"/>

This rule cannot be written through the UI Rule Editor; it must be written in XML and imported into the system.

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

certification sailpoint.object.Certification Reference to the certification object to
which this entity belongs

entity sailpoint.object.CertificationEntity Reference to the certificationEntity object
that was refreshed, causing launch of this
rule

Outputs: None. The rule can directly modify the CertificationEntity object passed to it as a parameter.

Example

This example certificationEntityRefresh rule copies values from custom attributes on the certification entity

down to the certification items associated with that entity.

import sailpoint.object.CertificationItem;

String custom1 = entity.getCustom1();

String custom2 = entity.getCustom2();

Map customMap = entity.getCustomMap();

if (null != entity.getItems()) {

 for (Iterator it=entity.getItems().iterator(); it.hasNext();) {

 CertificationItem item = (CertificationItem) it.next();

 item.setCustom1(custom1);

 item.setCustom2(custom2);

 item.setCustomMap(customMap);

 }

}

CertificationEntityCompletion

Description

A Certification Entity completion rule is run when a CertificationEntity is refreshed and has been determined to

be otherwise complete (i.e. all certification items on the entity are complete). The certification refresh process

Rules in IdentityIQ Page 63 of 170

occurs when changes to an access review are saved by the user. This rule determines whether the entity is still

missing any information. For example, the entity may require a 'classification' value to be present in a custom

field to be complete. If errors are found, the error messages (either plain-text messages or keys that map to

messages in the message catalog) are added to a List and returned to the caller, which tells IdentityIQ to mark

the Entity as still incomplete.

This rule was created to permit custom logic around CertificationItem extended attributes. In practice these

extended attributes and this rule type are seldom used.

Definition and Storage Location

The certification entity completion rule is specified in the System Configuration XML or can be specified in the

XML of individual CertificationDefinitions. If specified in the System Configuration, it is applied to every

certification, so it runs every time a certification entity is completed on any certification of any type. If specified

in a CertificationDefinition (by editing the XML directly after it is generated based on the UI certification

specification), it applies only to certifications generated from that definition. In either case, it is added to the

attributes map.

<entry key="certificationEntityCompletionRule" value="[Cert Entity Completion Rule

Name]"/>

This rule cannot be written through the UI Rule Editor; it must be written in XML and imported into the system.

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

certification sailpoint.object.Certification A reference to the Certification object
being refreshed

entity sailpoint.object.CertificationEntity A reference to the CertificationEntity
object being refreshed.

state java.util.Map Map in which any data can be stored;
shared across multiple rules run in the
same completion process (e.g.
certificationItemCompletion and
CertificationEntityCompletion rules can
share a state map)

Outputs:

Argument Type Purpose

messages List of
sailpoint.tools.message
objects or strings

List of message objects or strings if errors were found
(any contents in list mean that the Entity is not
complete); null if entity is complete

Rules in IdentityIQ Page 64 of 170

Example

This example CertificationEntityCompletion rule performs some data validation on custom attributes: Custom1

and Custom2 must be non-null, the “priceScale” entry in the CustomMap attribute must be either “dollars” or

“euro”, and the “cost” entry in the CustomMap attribute must be greater than or equal to zero. It returns error

messages if any of these validations fail.

import java.util.List;

import java.util.ArrayList;

import java.util.Map;

import java.util.HashMap;

List errors = new ArrayList();

String e1 = entity.getCustom1();

String e2 = entity.getCustom2();

String scale = null;

int cost = -1;

Map extendedMap = entity.getCustomMap();

if (null != extendedMap) {

 scale = (String) extendedMap.get("priceScale");

 Integer costInteger = (Integer) extendedMap.get("cost");

 if (null != costInteger) {

 cost = costInteger.intValue();

 }

}

if ((e1 == null) || (e1.equals(""))) {

 // plain-text message

 errors.add("The custom1 field must be filled out in order to complete this

item.");

}

if ((e2 == null) || (e2.equals(""))) {

 // key for the message in the messages catalog

 errors.add("custom2_missing_info");

}

if (scale == null) {

 // key for the message in the messages catalog, plus message arguments

 List list = new ArrayList();

 list.add("err_missing_custom_cert_info");

 list.add(entity.getIdentity());

 list.add(entity.getType());

 errors.add(list);

}

if (!(("euro".equals(scale) || "dollars".equals(scale)) || cost < 0) {

 errors.add("Cost cannot be negative and must be stated in dollars

 or euro.");

 entity.

}

return errors;

Rules in IdentityIQ Page 65 of 170

CertificationItemCompletion

Description

A CertificationItemCompletion rule is run when a CertificationItem is refreshed and appears to be complete.

This rule determines whether the item is still missing any information. The rule returns a Boolean value: true if

the item is complete according to the rule’s evaluation or false if the rule found the item to be still in an

incomplete state. The system then marks the item accordingly.

This rule was created to permit custom logic around CertificationItem extended attributes. In practice these

extended attributes and this rule type are seldom used.

Definition and Storage Location

The certificationItemCompletion rule is specified in the System Configuration XML. It is applied to every

certification, so it runs every time a certification item is completed on any certification of any type. Specify it in

the SystemConfiguration attributes map with this entry:

<entry key="certificationItemCompletionRule" value="[Cert Item Completion Rule

Name]"/>

This rule cannot be written through the UI Rule Editor; it must be written in XML and imported into the system.

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

certification sailpoint.object.Certification A reference to the Certification object to
which the Item (and entity) belong

item sailpoint.object.CertificationItem A reference to the CertificationItem
object being completed

entity sailpoint.object.CertificationItem A second reference to the
CertificationItem object being completed;
exists as a synonym for item

state java.util.Map A map of values that can be shared
between rules; allows passing of data
between rules

Outputs:

Argument Type Purpose

complete Boolean Returns true if item is deemed complete and false if it is
not

Rules in IdentityIQ Page 66 of 170

Example

This example CertificationItemCompletion rule checks that the custom1 attribute on certificationItem is not null.

If it is null, the item is deemed not complete.

String c1= item.getAttribute("custom1");

if (c1 != null)

 return true;

else

 return false;

CertificationAutomaticClosing

Description

A CertificationAutomaticClosing rule can be used to apply custom logic to certifications that have not been

finished by a certifier when the automatic closing date arrives (automatic closing date is configurable based on

certification end date). The perform maintenance task is responsible for automatically closing certifications for

which automatic closing has been enabled. Each certification set for automatic closing on or before the task’s

run date is identified and its automatic closing rule is run. Then the remaining auto-closing specifications are

applied to any of its items still in an incomplete or unfinished state.

Definition and Storage Location

The CertificationAutomaticClosing rule is specified in the UI during creation of a new certification. It is selected

on the Lifecycle page of any certification specification when Enable Automatic Closing is selected.

Setup -> Certifications -> Create new certification (any type) -> Lifecycle -> Enable Automatic Closing ->

Closing Rule

The rule is recorded in the CertificationDefinition’s attributes map.

<entry key="certificationAutomaticClosingRule" value="[Cert Automatic Closing Rule

Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

certification sailpoint.object.Certification A reference to the Certification object
being closed

Outputs: None; the rule should update the certification and its entities/items directly (or it may perform actions

outside the flow of the certification process, such as sending an email notice to someone about the incomplete

items).

Rules in IdentityIQ Page 67 of 170

Example

This example CertificationAutomaticClosing rule sends an email to the certification owner notifying them of the

items on which no decision was made. It iterates through the certification’s entities and items looking for items

on which no action has been taken, collecting those into a hash map. That map and an email template (created

independently) that specifies the message contents for this notification are used to send the email to the owner.

import sailpoint.object.Identity;

import sailpoint.object.Certification;

import sailpoint.object.CertificationEntity;

import sailpoint.object.CertificationItem;

import sailpoint.object.EntitlementSnapshot;

import sailpoint.object.EmailOptions;

import sailpoint.object.EmailTemplate;

import sailpoint.object.Attributes;

// This email notification goes to the cert owner

Identity owner =

certification.getCertificationDefinition(context).getCertificationOwner(context);

Map identityMap = new HashMap();

List entities = certification.getEntities();

// Iterate through the entities on this certification

for (CertificationEntity entity : entities) {

 String identityName = "";

 List items = entity.getItems();

 List openItems = new ArrayList();

 // Iterate through the items for each entity

 for (CertificationItem item : items) {

 EntitlementSnapshot ent = item.getExceptionEntitlements();

 if (null != ent) {

 Attributes attrs = ent.getAttributes();

 if (null != attrs) {

 List attrNames = attrs.getKeys();

 for (String attrName : attrNames) {

 String attrVal = attrs.getString(attrName);

 // items with no action attached are still open

 // and need to be in the email message

 if (item.getAction() == null) {

 openItems.add(attrName + " " + attrVal);

 }

 }

 }

 }

 if (item != null)

 context.decache(item);

 }

 Identity remediatedUser = entity.getIdentity(context);

 String identityName = remediatedUser.getDisplayableName();

 identityMap.put(identityName,openItems);

 if (entity != null)

 context.decache(entity);

}

String templateName = "AutoClosed Cert";

EmailTemplate template = (EmailTemplate) context.getObject(EmailTemplate.class,

templateName);

template.setTo(owner.getEmail());

template.setCc("");

EmailOptions options = new EmailOptions();

Rules in IdentityIQ Page 68 of 170

options.setSendImmediate(true);

options.setNoRetry(true);

options.setVariable("certification", certification);

options.setVariable("identityMap", identityMap);

context.sendEmailNotification(template, options);

CertificationSignOffApprover

Description

A CertificationSignOffApprover rule is used to specify one or more additional levels of approval for a

certification. When the certification is signed off, this rule runs (if one is specified for the certification) to

identify the next approver to whom the certification should be forwarded for review and approval. This rule

runs every time a certification is signed off, including second-level signoffs. As long as the rule returns an

Identity, the certification will be forwarded to that Identity for review and signoff; when it returns null, the

forwarding process terminates for the certification.

NOTE: If the logic in this rule could potentially reroute the certification to the same Identity who just signed off

on it, the rule must check for this condition and return null when the new certifier matches the existing one.

Otherwise, an endless loop could be created where the certification is repeatedly returned to the same certifier

for another signoff, and the certification would never successfully complete.

Definition and Storage Location

The CertificationSignOffApprover rule is specified in the UI during creation of a new certification. It is selected

on the Advanced page of any certification specification.

Setup -> Certifications -> Create new certification (any type) -> Advanced -> Sign Off Approver Rule

The rule is recorded in the CertificationDefinition’s attributes map.

<entry key="signOffApproverRuleName" value="[Cert Signoff Approver Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

certification sailpoint.object.Certification A reference to the Certification object
being closed

certifier sailpoint.object.Identity Reference to the Identity who was
assigned as the certifier for this
certification

state java.util.Map A map of values that can be shared
between rules; allows passing of data
between rules

Rules in IdentityIQ Page 69 of 170

Outputs:

Argument Type Purpose

results java.util.Map Map containing either an Identity or Identity name with
the key “identity” or “identityName”, respectively.
e.g.: “identity”, identityObject or
“identityName”, “Adam.Kennedy”

Example

This example CertificationSignOffApprover rule forwards the certification to the certifier’s manager for approval.

This process continues with this rule until the certifier does not have a manager (e.g. all the way up the manager

hierarchy).

import sailpoint.object.Identity;

// This requires approval all the up the manager hierarchy. Once we get

// to the most senior manager, approvals stop.

Identity identity = certifier.getManager();

if (identity != null) {

 Map results = new HashMap();

 results.put("identity", identity);

 return results;

} else {

 return null;

}

Since every signer is added to the certificationSignOffHistory immediately after the certificationSignOffApprover

rule runs, this rule could be limited to only require one level of secondary signoff by checking the certification

signoff history like this:

import sailpoint.object.Certification;

import sailpoint.object.Identity;

// if cert signoff history indicates it has already been signed off once,

// do not submit to any other levels of

approval

List history = certification.getSignOffHistory();

if (history == null || history.isEmpty()){

 Identity identity = certifier.getManager();

 Map results = new HashMap();

 results.put("identity", identity);

 return results;

}

else

 return null;

}

Rules in IdentityIQ Page 70 of 170

IdentityTrigger

Description

An IdentityTrigger rules apply to both Certification Events and Lifecycle Events; they determine whether the

associated certification or business process (respectively) should be triggered for the Identity on which an action

occurs. IdentityTrigger rules run anytime an Identity is changed in an Identity Refresh or Aggregation if the

“Process Events” option is selected on the task, and they are passed the Identity as it existed before and after

the change. They also run when an Identity is edited through the Define -> Identities administrator page. The

rule’s logic determines what attributes are evaluated, and the rule can return a True or False value; True fires

the certification/business process associated with the rule and False does not.

When more than one trigger exists, they are retrieved from the database without regard to order, so their

evaluation order depends on the database engine and possibly the order in which they were created in the

database. Regardless, all are passed the same new and previous identity values (i.e. the effects of the one

trigger’s event do not feed into the next trigger’s evaluation). Additionally, if multiple triggers’ conditions are

met in one Identity update, the events launched by the triggers are processed in the background and may occur

concurrently.

Definition and Storage Location

The IdentityTrigger rule is specified in the UI during specification of a certification event or lifecycle event.

Setup -> Certifications -> Certification Events -> New Certification Event -> Event Type: Rule -> Rule

or

Setup -> Lifecycle Events -> New Lifecycle Event -> Event Type: Rule -> Rule

The rule is referenced in the IdentityTrigger XML representing the event.

<TriggerRule>

<Reference class="sailpoint.object.Rule" id="402846023a660a1d013a8e3ba5ed12ca"

name="[IdentityTrigger Rule Name]"/>

</TriggerRule>

The Process Events option on the task is specified in the taskDefinition attributes map as the “processTriggers”

key. This is selectable through the UI for Identity Refresh tasks but must be manually added to the

taskDefinition XML for aggregation tasks.

<entry key="processTriggers" value="true"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

previousIdentity sailpoint.object.Identity Identity as it existed before it was
updated

newIdentity sailpoint.object.Identity Identity as it existed after it was updated

Rules in IdentityIQ Page 71 of 170

NOTE: Either Identity can be void (previous is void on Identity creation and new is void on Identity deletion) and

the rule must test for this to prevent a possible exception condition.

Outputs:

Argument Type Purpose

result Boolean True if the event should be triggered or false if it should
not

Example

This example IdentityTrigger rule causes the certification or lifecycle event to fire only if the Identity’s job title

changes from “DBA” to “Production Manager”.

// The instanceof operator returns false if the object is null or void

// as well as if it is a different object type.

if (!(previousIdentity instanceof Identity) || !(newIdentity instanceof Identity)) {

 return false;

}

String oldVal = previousIdentity.getAttribute("jobtitle");

String newVal = newIdentity.getAttribute("jobtitle");

return "DBA".equals(oldVal) && "Production Manager".equals(newVal);

IdentitySelector

Description

Like an IdentityTrigger, an IdentitySelector rule can apply to a Certification Event or a Lifecycle Event and

determines whether the associated certification or business process should be run for the Identity on which an

action occurs. The difference is that an IdentityTrigger rule defines the event itself whereas an IdentitySelector

rule determines the set of Identities to which the event applies. Additionally, the IdentitySelector rule (or any

identity selector filter) is evaluated before the action is examined, so if the Identity on which the action occurred

is not part of the Identity selector filter, the action is ignored and the certification or business process is not

fired.

Like IdentityTrigger rules, these rules only run during refresh or aggregation if the “process events” option is

selected for the identity refresh or aggregation task.

IdentitySelector rules can also be used for specifying criteria for role assignment or for Advanced Policy

detection. In the case of role assignment rules, if the rule returns “true”, the role is assigned to the Identity. See

the description of the Policy rule type for more information on the Policy usage of IdentitySelector rules. Role

assignment and policy rules are also run by Identity Refresh tasks, though their execution is controlled by the

“Refresh assigned, detected roles and promote additional entitlements” and “Check active policies” options,

respectively.

Rules in IdentityIQ Page 72 of 170

Definition and Storage Location

The IdentitySelector rule is specified in the UI during specification of a certification event or lifecycle event.

Setup -> Certifications -> Certification Events -> New Certification Event -> Include Identities: Rule

or

Setup -> Lifecycle Events -> New Lifecycle Event -> Include Identities: Rule

The rule is referenced in the IdentityTrigger XML representing the event.

<Selector>

 <IdentitySelector>

 <RuleRef>

<Reference class="sailpoint.object.Rule" id="402846023a65e596013a65e6e0900267"

name="[IdentitySelector Rule Name]"/>

 </RuleRef>

 </IdentitySelector>

</Selector>

The Process Events option on the task is specified in the taskDefinition attributes map as the “processTriggers”

key. This is selectable through the UI for Identity Refresh tasks but must be manually added to the

taskDefinition XML for aggregation tasks.

<entry key="processTriggers" value="true"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

identity sailpoint.object.Identity Identity object on which the triggering action has
occurred (post-change version unless change is a
delete action, in which case pre-change version is
passed to rule)

Outputs:

Argument Type Purpose

success Boolean True if the Identity meets the criteria for running the
certification/business process or false if it does not

Example

This example IdentitySelector rule causes the event to be applied only to Identities assigned to the APAC region.

import sailpoint.object.Identity;

if ("APAC".equals(identity.getRegion()) {

 return true;

Rules in IdentityIQ Page 73 of 170

} else {

 return false;

}

Provisioning Rules

These rules run during the processing of provisioning requests. Some are connector specific and some apply for

all connectors, as indicated in their descriptions.

BeforeProvisioning

Description

The BeforeProvisioning rule is executed immediately before the connector's provisioning method is called. This

gives customer the ability to customize or react to anything in the ProvisioningPlan before the requests are sent

to the underlying connectors used in provisioning. This rule is not connector-specific; it runs for all applications

regardless of connector type.

Definition and Storage Location

This rule is associated to an application in the UI through the application definition.

Applications -> Application Definition -> select an application or create a new application -> Rules ->

Provisioning Rules section -> Before Provisioning Rule

The reference to the rule is recorded in the Application XML in the attributes map as:

<entry key="beforeProvisioningRule" value="[Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

plan sailpoint.integration.ProvisioningPlan Contains provisioning request details
application sailpoint.object.Application Application object containing this rule reference

Outputs: None. The rule should directly update the ProvisioningPlan passed to it.

Example

This example BeforeProvisioning Rule alters the “region” value in the plan being provisioned to change it from

“Europe” to “EMEA”.

 import sailpoint.object.*;

 import sailpoint.tools.*;

 import sailpoint.object.ProvisioningPlan;

 import sailpoint.object.ProvisioningPlan.AccountRequest;

 import sailpoint.object.ProvisioningPlan.AttributeRequest;

 import sailpoint.object.ProvisioningPlan.Operation;

Rules in IdentityIQ Page 74 of 170

 AccountRequest acctReq = plan.getAccountRequest("TestApp");

 boolean found = false;

 List attributeRequests = acctReq.getAttributeRequests();

 if (attributeRequests != null) {

 for (AttributeRequest req : attributeRequests) {

 String name = req.getName();

 if (name != null && name.compareTo("region") == 0) {

 if ("Europe".equals(req.getValue())){

 req.setValue("EMEA");

 }

 }

 }

 }

AfterProvisioning

Description

An application’s AfterProvisioning rule is executed immediately after the connector's provisioning method is

called, but only if the provisioning result is in a committed or queued state. This gives customers the ability to

customize or react to anything in the ProvisioningPlan that has been sent out to specific applications after the

provisioning request has been processed. This rule is not connector-specific; it runs for all applications

regardless of connector type.

Definition and Storage Location

This rule is associated to an application in the UI through the application definition.

Applications -> Application Definition -> select an application or create a new application -> Rules ->

Provisioning Rules section -> After Provisioning Rule

The rule name is recorded in the attributes map of the application XML. as:

<entry key="afterProvisioningRule" value="[Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

plan sailpoint.object.ProvisioningPlan Contains provisioning request details

application sailpoint.object.Application Application object containing this rule
reference

result sailpoint.object.ProvisioningResult Contains provisioning request result

Outputs: none; the rule’s actions are outside the direct provisioning process so no return value is expected or

used

Rules in IdentityIQ Page 75 of 170

Example

This example rule notifies the application owner if an Identity is assigned the Super User role in the application.

Similar logic would apply to users being added to a specific Active Directory group, etc.

import sailpoint.object.*;

import sailpoint.object.ProvisioningPlan;

import sailpoint.object.ProvisioningPlan.AccountRequest;

import sailpoint.object.ProvisioningPlan.AttributeRequest;

// examine provisioning result to see if Identity has been added to Admin group

System.out.println("running after provisioning rule");

String requester;

if (plan != null) {

 List accounts = plan.getAccountRequests();

 if ((accounts != null) && (accounts.size() > 0)) {

 for (AccountRequest account : accounts) {

 if ((account != null) &&

 (AccountRequest.Operation.Create.equals(account.getOperation())

 || AccountRequest.Operation.Modify.equals(account.getOperation()))) {

 //Check if adding someone to "super" role

 AttributeRequest attrReq =

account.getAttributeRequest("role");

 if (attrReq != null) {

 if ("super".equals(attrReq.getValue())) {

 String nativeIdent = plan.getNativeIdentity();

 List requesters = plan.getRequesters();

 if (!(null == requesters || void == requesters)) {

 Identity reqIdent = requesters.get(0);

 requester = reqIdent.getName();

 } else {

 requester = "No requester recorded";

 }

 // email application owner if they find “super” role

 Identity appOwner = application.getOwner();

 System.out.println("owner:" + appOwner.toXml());

 System.out.println("email:" + appOwner.getEmail());

 String templateName = "NewSuperUser";

 EmailTemplate template = (EmailTemplate)

context.getObject(EmailTemplate.class, templateName);

 template.setTo(appOwner.getEmail());

 EmailOptions options = new EmailOptions();

 options.setSendImmediate(true);

 options.setNoRetry(true);

 options.setVariable("nativeIdentity", nativeIdent);

 options.setVariable("requester", requester);

 context.sendEmailNotification(template, options);

 }

 }

 }

 }

 }

}

Rules in IdentityIQ Page 76 of 170

JDBCProvision

Description

A JDBC Provision rule is only specified for an application that uses the JDBC connector and supports provisioning.

It contains the application-specific provisioning logic for applications which use that connector. The JDBC

connector is a generic connector that cannot know how to provision to the specific database except as

instructed in custom-written logic provided a provisioning rule.

Definition and Storage Location

This rule is associated to an application in the UI through the application definition:

Applications -> Application Definition -> Select application or create new application with Application

Type: JDBC -> Rules -> Provision Rule Type: Global Provision Rule -> Provision Rule

The reference to the rule is recorded in the Application XML.

<entry key="jdbcProvisionRule" value="[JDBC Provision Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.Application Reference to the application object
schema sailpoint.object.Schema Reference to the application schema

connection java.sql.Connection Connection object to connect to the JDBC
database

plan sailpoint.object.ProvisioningPlan Provisioning plan containing the provisioning
request(s)

Outputs:

Argument Type Purpose

result sailpoint.object.ProvisioningResult ProvisioningResult object containing the
status (success, failure, retry, etc.) of the
provisioning request

Example

This example JDBC rule can process account creation requests, deletion requests, and modification requests that

pertain to the “role” attribute. It logs debug messages if other account request types are submitted.

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import java.sql.Types;

import java.util.List;

import sailpoint.api.SailPointContext;

import sailpoint.connector.JDBCConnector;

Rules in IdentityIQ Page 77 of 170

import sailpoint.object.Application;

import sailpoint.object.ProvisioningPlan;

import sailpoint.object.ProvisioningPlan.AccountRequest;

import sailpoint.object.ProvisioningPlan.AttributeRequest;

import sailpoint.object.ProvisioningPlan.PermissionRequest;

import sailpoint.object.ProvisioningResult;

import sailpoint.object.Schema;

import sailpoint.tools.xml.XMLObjectFactory;

import org.apache.commons.logging.LogFactory;

import org.apache.commons.logging.Log;

Log _log = LogFactory.getLog("RuleProvisionSampleDB");

public String getAttributeRequestValue(AccountRequest acctReq, String attribute) {

 if (acctReq != null) {

 AttributeRequest attrReq = acctReq.getAttributeRequest(attribute);

 if (attrReq != null) {

 return attrReq.getValue();

 }

 }

 return null;

}

ProvisioningResult result = new ProvisioningResult();

if (plan != null) {

 _log.debug("plan [" + plan.toXml() + "]");

 List accounts = plan.getAccountRequests();

 if ((accounts != null) && (accounts.size() > 0)) {

 for (AccountRequest account : accounts) {

 try {

 if (AccountRequest.Operation.Create.equals(account.getOperation())) {

//Ideally we should first check to see if the account already exists.

//As written, this just assumes it does not.

 _log.debug("Operation [" + account.getOperation() + "] detected.");

 PreparedStatement statement = connection.prepareStatement("insert into

users (login,first,last,role,status) values (?,?,?,?,?)");

 statement.setString (1, (String) account.getNativeIdentity());

 statement.setString (2, getAttributeRequestValue(account,"first"));

 statement.setString (3, getAttributeRequestValue(account,"last"));

 statement.setString (4, getAttributeRequestValue(account,"role"));

 statement.setString (5, getAttributeRequestValue(account,"status"));

 statement.executeUpdate();

 result.setStatus(ProvisioningResult.STATUS_COMMITTED);

 } else if (AccountRequest.Operation.Modify.equals(account.getOperation())

) {

 // Modify account request -- change role

 _log.debug("Operation [" + account.getOperation() + "] detected.");

 PreparedStatement statement = connection.prepareStatement("update users

set role = ? where login = ?");

 statement.setString (2, (String) account.getNativeIdentity());

 if (account != null) {

 AttributeRequest attrReq = account.getAttributeRequest("role");

 if (attrReq != null &&

ProvisioningPlan.Operation.Remove.equals(attrReq.getOperation())) {

 statement.setNull (1, Types.NULL);

 _log.debug("Preparing to execute:"+statement.toString());

 statement.executeUpdate();

 } else {

Rules in IdentityIQ Page 78 of 170

 statement.setString(1,attrReq.getValue());

 _log.debug("Preparing to execute:"+statement.toString());

 statement.executeUpdate();

 }

 }

 result.setStatus(ProvisioningResult.STATUS_COMMITTED);

 } else if (AccountRequest.Operation.Delete.equals(account.getOperation())

) {

 _log.debug("Operation [" + account.getOperation() + "] detected.");

 PreparedStatement statement = connection.prepareStatement((String)

application.getAttributeValue("account.deleteSQL"));

 statement.setString (1, (String) account.getNativeIdentity());

 statement.executeUpdate();

 result.setStatus(ProvisioningResult.STATUS_COMMITTED);

 } else if (AccountRequest.Operation.Disable.equals(account.getOperation()

)) {

 // Not supported.

 _log.debug("Operation [" + account.getOperation() + "] is not

supported!");

 } else if (AccountRequest.Operation.Enable.equals(account.getOperation())

) {

 // Not supported.

 _log.debug("Operation [" + account.getOperation() + "] is not

supported!");

 } else if (AccountRequest.Operation.Lock.equals(account.getOperation()))

{

 // Not supported.

 _log.debug("Operation [" + account.getOperation() + "] is not

supported!");

 } else if (AccountRequest.Operation.Unlock.equals(account.getOperation())

) {

 // Not supported.

 _log.debug("Operation [" + account.getOperation() + "] is not

supported!");

 } else {

 // Unknown operation!

 _log.debug("Unknown operation [" + account.getOperation() + "]!");

 }

 }

 catch(SQLException e) {

 _log.error(e);

 result.setStatus(ProvisioningResult.STATUS_FAILED);

 result.addError(e);

 }

 }

 }

}

_log.debug("result [" + result.toXml(false)+ "]");

return result;

JDBCOperationProvisioning

Description

A JDBC Operation Provisioning rule is only specified for an application that uses the JDBC connector and

supports provisioning. It contains application- and operation-specific provisioning logic for the application. The

Rules in IdentityIQ Page 79 of 170

JDBC connector is a generic connector that cannot know how to provision to the specific database except as

instructed in custom-written logic provided a provisioning rule.

Separate JDBCOperationProvisioning rules are created for account enabling, account disabling, account deletion,

account unlocking, account creation, and account modification. This rule type was introduced in IdentityIQ

version 6.1 as an alternative to specifying a single JDBCProvision rule which performs all of these operations for

the application.

Definition and Storage Location

This rule is associated to an application in the UI through the application definition:

Applications -> Application Definition -> Select application or create new application with Application

Type: JDBC -> Rules -> Provision Rule Type: By Operation Rules -> Enable Provision Rule or Disable

Provision Rule, etc.

The reference to the rule is recorded in the Application XML.

<entry key="jdbcEnableProvisioningRule" value="[JDBCOperationProvision Rule Name]"/>

<entry key="jdbcDisableProvisioningRule" value="[JDBCOperationProvision Rule Name]"/>

<entry key="jdbcCreateProvisioningRule" value="[JDBCOperationProvision Rule Name]"/>

<entry key="jdbcDeleteProvisioningRule" value="[JDBCOperationProvision Rule Name]"/>

<entry key="jdbcModifyProvisioningRule" value="[JDBCOperationProvision Rule Name]"/>

<entry key="jdbcUnlockProvisioningRule" value="[JDBCOperationProvision Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.Application Reference to the application object

schema sailpoint.object.Schema Reference to the application schema
connection java.sql.Connection Connection object to connect to the JDBC

database

plan sailpoint.object.ProvisioningPlan Provisioning plan containing the
provisioning request(s) to be processed

request sailpoint.object.ProvisioningPlan.
AbstractRequest

AbstractRequest object containing the
account request (or object request, in the
case of group provisioning) to be processed

Outputs:

Argument Type Purpose

result sailpoint.object.ProvisioningResult ProvisioningResult object containing the
status (success, failure, retry, etc.) of the
provisioning request

Example

This example JDBC Operation Provisioning rule can process an account creation request.

Rules in IdentityIQ Page 80 of 170

NOTE: This is the same rule code found above in the JDBC Provisioning Rule within the account create operation

code block. Separate rules would then be created for the account modify, delete, unlock, etc. operations.

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import java.sql.Types;

import java.util.List;

import sailpoint.api.SailPointContext;

import sailpoint.connector.JDBCConnector;

import sailpoint.object.Application;

import sailpoint.object.ProvisioningPlan;

import sailpoint.object.ProvisioningPlan.AccountRequest;

import sailpoint.object.ProvisioningPlan.AttributeRequest;

import sailpoint.object.ProvisioningResult;

import sailpoint.object.Schema;

import sailpoint.tools.xml.XMLObjectFactory;

import org.apache.commons.logging.LogFactory;

import org.apache.commons.logging.Log;

public String getAttributeRequestValue(AccountRequest acctReq, String attribute) {

 if (acctReq != null) {

 AttributeRequest attrReq = acctReq.getAttributeRequest(attribute);

 if (attrReq != null) {

 return attrReq.getValue();

 }

 }

 return null;

}

AccountRequest acctRequest = (AccountRequest) request;

ProvisioningResult result = new ProvisioningResult();

try {

 //Ideally we should first check to see if the account already exists.

 //As written, this just assumes it does not.

 log.debug("Operation [" + acctRequest.getOperation() + "] detected.");

 PreparedStatement statement = connection.prepareStatement("insert into

users (login,first,last,role,status) values (?,?,?,?,?)");

 statement.setString (1, (String) acctRequest.getNativeIdentity());

 statement.setString (2, getAttributeRequestValue(acctRequest,"first"));

 statement.setString (3, getAttributeRequestValue(acctRequest,"last"));

 statement.setString (4, getAttributeRequestValue(acctRequest,"role"));

 statement.setString (5, getAttributeRequestValue(acctRequest,"status"));

 statement.executeUpdate();

 result.setStatus(ProvisioningResult.STATUS_COMMITTED);

 }

 catch(SQLException e) {

 log.error(e);

 result.setStatus(ProvisioningResult.STATUS_FAILED);

 result.addError(e);

 }

log.debug("result [" + result.toXml(false)+ "]");

return result;

Rules in IdentityIQ Page 81 of 170

SapHrProvision

Description

The SAP HR/HCM connector was introduced in version 7.0, so this rule applies only to versions 7.0+.

Two options are available for configuring provisioning to SAP HR/HCM applications:

1. A single rule (of type SapHrProvision) which contains all supported provisioning operations, or

2. A collection of operation-specific rules (of type SapHrOperationProvisioning, discussed below), one per

supported provisioning operation

An SAP HR Provision rule is specified for an application that uses the SAP HR/HCM connector if it will support

provisioning. It contains the installation-specific provisioning logic for provisioning to the SAP HR application.

Definition and Storage Location

This rule is associated to an application in the UI through the application definition:

Applications -> Application Definition -> select application or create new application with Application

Type: SAP HR/HCM -> Rules -> Provision Rule Type: Global Provision Rule -> Provision Rule

The reference to the rule is recorded in the Application XML.

<entry key="saphrProvisionRule" value="[Provision Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.Application Reference to the application object

schema sailpoint.object.Schema Reference to the application schema
destination com.sap.conn.jco.JCoDestination A connected and ready to use SAP destination

object that can be used to call BAPI function
modules and call to SAP tables.

plan sailpoint.object.ProvisioningPlan Provisioning plan containing the provisioning
request(s)

request Sailpoint.object.ProvisioningPlan.
AbstractRequest

AccountRequest being processed; always null
for this global rule; only set for
SapHrOperationProvisioning

connector Sailpoint.connector.SAPHRConnector Application connector being used for the
operation

Outputs:

Argument Type Purpose

result sailpoint.object.ProvisioningResult ProvisioningResult object containing the status
(success, failure, retry, etc.) of the provisioning
request

Rules in IdentityIQ Page 82 of 170

Example

This example rule shows how to parse a provisioningPlan to determine the appropriate operation. The details

within each operation would then be similar to the logic shown in the SapHrOperationProvisioning rule example

below.

ProvisioningResult result = new ProvisioningResult();

if (plan != null) {

 _log.debug("plan [" + plan.toXml() + "]");

 List accounts = plan.getAccountRequests();

 if ((accounts != null) && (accounts.size() > 0)) {

 for (AccountRequest account : accounts) {

 try {

 if (AccountRequest.Operation.Create.equals(

account.getOperation())) {

 // Process Create request

 } else if (AccountRequest.Operation.Create.equals(account.getOperation())) {

 // Process Modify request as illustrated in SapHrOperationProvisioning

 // rule below

 …

 }

 }

 }

 }

}

return result;

SapHrOperationProvisioning

Description

The SAP HR/HCM connector was introduced in version 7.0, so this rule applies only to versions 7.0+.

An SAP HR Operation Provisioning rule is an alternative to the SAP HR Provision rule when the installation wants

to partition their provisioning logic into individual rules per operation. It contains the installation-specific

provisioning logic for each specific provisioning operation for the SAP HR application.

Separate SapHrOperationProvisioning rules can be created for account enabling, account disabling, account

deletion, account unlocking, account creation, and account modification.

Definition and Storage Location

This rule is associated to an application in the UI through the application definition:

Applications -> Application Definition -> select application or create new application with Application

Type: SAP HR/HCM -> Rules -> Provision Rule Type: By Operation Rules -> [Operation] Provision Rule

The reference to the rule is recorded in the Application XML.

<entry key="saphrEnableProvisioningRule" value="[OperationProvision Rule Name]"/>

<entry key="saphrDisableProvisioningRule" value="[OperationProvision Rule Name]"/>

<entry key="saphrCreateProvisioningRule" value="[OperationProvision Rule Name]"/>

<entry key="saphrDeleteProvisioningRule" value="[OperationProvision Rule Name]"/>

<entry key="saphrModifyProvisioningRule" value="[OperationProvision Rule Name]"/>

Rules in IdentityIQ Page 83 of 170

<entry key="saphrUnlockProvisioningRule" value="[OperationProvision Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
application sailpoint.object.Application Reference to the application object

schema sailpoint.object.Schema Reference to the application schema

destination com.sap.conn.jco.JCoDestination A connected and ready to use SAP
destination object that can be used to call
BAPI function modules and call to SAP
tables.

connection java.sql.Connection Connection object to connect to the JDBC
database

plan sailpoint.object.ProvisioningPlan Provisioning plan containing the
provisioning request(s) to be processed

request sailpoint.object.ProvisioningPlan.
AbstractRequest

AbstractRequest object containing the
account request (or object request, in the
case of group provisioning) to be processed

Outputs:

Argument Type Purpose
result sailpoint.object.ProvisioningResult ProvisioningResult object containing the

status (success, failure, retry, etc.) of the
provisioning request

Example

An example rule of this type is provided in the [IdentityIQ installation directory]/WEB-

INF/config/examplerules.xml file. A simplified version of that rule is provided here for illustration of the key

components of this rule. This example is for an account modify operation, and this simplified version only

updates the email address attribute. Error handling and other auxiliary logic have been omitted for brevity. The

rule in examplerules.xml should be used as a model for writing your actual production rule.

In summary, this rule should iterate through the AccountRequests in the (modify) ProvisioningPlan. For each

AccountRequest, if there is a request to set the email address to a new value, it should issue the appropriate

BAPI calls to update that email address. Additional logic in this rule illustrates calls to retrieve date range

parameter and other attributes which can affect the request.

This rule modifies ony the email attribute (“0010”), but the same logic could also be applied to modify phone

(“0020”) or SY-USERNAME (“0001”), as shown in the example in examplerules.xml.

boolean isEmailInPlan = false;

String SUBTYPE_EMAIL = "0010";

String errorText = "";

// This function will iterate through account requests in plan, retrieve email

Rules in IdentityIQ Page 84 of 170

// address attribute request updates, and process them

public void doProvision() throws Exception {

 List<AccountRequest> accReqList = plan.getAccountRequests();

 String accNativeIdentity = null;

 if (!Util.isEmpty(accReqList)) {

 int accReqListSize = accReqList.size();

 for(AccountRequest accReq : accReqList) {

 if (accReq.getApplication().equals(application.getName())) {

 accNativeIdentity = accReq.getNativeIdentity();

 AttributeRequest emailAttrib = accReq.getAttributeRequest("Email");

 //Finding the email attribute in provisioning plan and

 //trying to modify the account's email id

 if (null != emailAttrib &&

 emailAttrib.getOp().toString().equalsIgnoreCase("Set")) {

 isEmailInPlan = true;

 modifyCommunicationData(accNativeIdentity,

 emailAttrib.getValue(), SUBTYPE_EMAIL);

 }

 }

 }

 }

}

// function modifies the email address of SAP HR record

// Email must be present(assigned) in order to modify it

// BAPI used - BAPI_EMPLCOMM_CHANGE

public void modifyCommunicationData(String userId, String parValue, String type)

 throws Exception {

 // set effective date range from today till end of year 9999

 String endDateStr = "99991231";

 SimpleDateFormat formatter = new SimpleDateFormat("yyyyMMdd");

 String beginDateStr = formatter.format(new Date());

 // Bapi locks the record for processing

 JCoFunction functionEnqueue = destination.getRepository().getFunction(

 "BAPI_EMPLOYEE_ENQUEUE");

 functionEnqueue.getImportParameterList().setValue("NUMBER", userId);

 // Bapi to modify Communication data - email and phone

 JCoFunction functionCommunicationChange =

connector.getFunction(destination,"BAPI_EMPLCOMM_CREATE");

 if (functionCommunicationChange == null)

 throw new RuntimeException("BAPI_EMPLCOMM_CREATE not found in SAP.");

 String returnPersonnelID = null;

 functionCommunicationChange.getImportParameterList().setValue("EMPLOYEENUMBER",

userId); // Personal Number

 functionCommunicationChange.getImportParameterList().setValue("SUBTYPE", type); //

SubType 0010/0020 - Email/Phone

 functionCommunicationChange.getImportParameterList().setValue("VALIDITYBEGIN",

beginDateStr); // Begin Date

 functionCommunicationChange.getImportParameterList().setValue("VALIDITYEND",

endDateStr); // End Date

 functionCommunicationChange.getImportParameterList().setValue("COMMUNICATIONID",

parValue); // Email Address to modify

 // Bapi unlocks the record after processing

 JCoFunction functionDequeue = destination.getRepository().getFunction(

 "BAPI_EMPLOYEE_DEQUEUE");

 functionDequeue.getImportParameterList().setValue("NUMBER", userId);

 try {

 // executing Bapis

 JCoContext.begin(destination);

Rules in IdentityIQ Page 85 of 170

 functionEnqueue.execute(destination);

 functionCommunicationChange.execute(destination);

 functionDequeue.execute(destination);

 } catch (Exception e) {

 } finally {

 JCoContext.end(destination);

 }

}

doProvision();

return result;

PeopleSoftHRMSProvision

Description

The PeopleSoft HCM Database connector was introduced in version 7.0, so this rule applies only to versions

7.0+.

Two options are available for configuring provisioning to PeopleSoft HCM Database applications:

1. A single rule (of type PeopleSoftHRMSProvision) which contains all supported provisioning operations,

or

2. A collection of operation-specific rules (of type PeopleSoftHRMSOperationProvisioning, discussed

below), one per supported provisioning operation

A PeopleSoft HRMS Provision rule is specified for an application that uses the PeopleSoft HCM Database

connector if it will support provisioning. It contains the installation-specific provisioning logic for provisioning to

the PeopleSoft HCM database application.

Definition and Storage Location

This rule is associated to an application in the UI through the application definition:

Applications -> Application Definition -> select application or create new application with Application

Type: PeopleSoft HCM Database -> Rules -> Connector Rules section -> select Provision Rule Type:

Global Provision Rule -> Provision Rule

The reference to the rule is recorded in the Application XML.

<entry key="peoplesofthrProvisionRule" value="[Provision Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
application sailpoint.object.Application Reference to the application object

schema sailpoint.object.Schema Reference to the application schema

plan sailpoint.object.ProvisioningPlan Provisioning plan containing the provisioning
request(s)

request Sailpoint.object.ProvisioningPlan. AccountRequest being processed; always null

Rules in IdentityIQ Page 86 of 170

AbstractRequest for this global rule; only set for
PeopleSoftHRMSOperationProvisioning rules

connector Sailpoint.connector.
PeopleSoftHRMSConnector

Application connector being used for the
application

Outputs:

Argument Type Purpose

result sailpoint.object.ProvisioningResult ProvisioningResult object containing the status
(success, failure, retry, etc.) of the provisioning
request

Example

This example rule shows how to parse a provisioningPlan to determine the appropriate operation. The details

within each operation would then be similarto the logic shown in the PeopleSoftHRMSOperationProvisioning

rule example below.

ProvisioningResult result = new ProvisioningResult();

if (plan != null) {

 _log.debug("plan [" + plan.toXml() + "]");

 List accounts = plan.getAccountRequests();

 if ((accounts != null) && (accounts.size() > 0)) {

 for (AccountRequest account : accounts) {

 try {

 if (AccountRequest.Operation.Create.equals(

account.getOperation())) {

 // Process Create request

 } else if (AccountRequest.Operation.Create.equals(account.getOperation())) {

 // Process Modify request as illustrated in the

 // PeopleSoftHRMSOperationProvisioning rule below

 …

 }

 }

 }

 }

}

return result;

PeopleSoftHRMSOperationProvisioning

Description

The PeopleSoft HCM Database connector was introduced in version 7.0, so this rule applies only to versions

7.0+.

A PeopleSoft HRMS Operation Provisioning rule is an alternative to the PeopleSoft HRMS Provision rule when

the installation wants to partition their provisioning logic into individual rules per operation. It contains the

installation-specific provisioning logic for each specific provisioning operation for the PeopleSoft HCM Database

application.

Rules in IdentityIQ Page 87 of 170

Separate PeopleSoftHRMSOperationProvisioning rules can be created for account enabling, account disabling,

account deletion, account unlocking, account creation, and account modification.

Definition and Storage Location

This rule is associated to an application in the UI through the application definition:

Applications -> Application Definition -> select application or create new application with Application

Type: PeopleSoft HCM Database -> Rules -> Connector Rules section -> select Provision Rule Type: By

Operation Rules -> [Operation] Provision Rule

The reference to the rule is recorded in the Application XML.

<entry key="peoplesofthrEnableProvisioningRule" value="[OperationProvision Rule

Name]"/>

<entry key="peoplesofthrDisableProvisioningRule" value="[OperationProvision Rule

Name]"/>

<entry key="peoplesofthrCreateProvisioningRule" value="[OperationProvision Rule

Name]"/>

<entry key="peoplesofthrDeleteProvisioningRule" value="[OperationProvision Rule

Name]"/>

<entry key="peoplesofthrModifyProvisioningRule" value="[OperationProvision Rule

Name]"/>

<entry key="peoplesofthrUnlockProvisioningRule" value="[OperationProvision Rule

Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.Application Reference to the application object

session Session connection to PeopleSoft server

schema sailpoint.object.Schema Reference to the application schema

plan sailpoint.object.ProvisioningPlan Provisioning plan containing the provisioning
request(s) to be processed

request sailpoint.object.ProvisioningPlan.
AbstractRequest

AbstractRequest object containing the account
request (or object request, in the case of
group provisioning) to be processed

connector Sailpoint.connector.
PeopleSoftHRMSConnector

Application connector being used for the
application

Outputs:

Argument Type Purpose

result sailpoint.object.ProvisioningResult ProvisioningResult object containing the status
(success, failure, retry, etc.) of the provisioning
request

Rules in IdentityIQ Page 88 of 170

Example

An example rule of this type is provided in the [IdentityIQ installation directory]/WEB-

INF/config/examplerules.xml file. A simplified version of that rule is provided here for illustration of the key

components of this rule. This example is for an account modify operation, and this simplified version only

updates the email address attribute. Error handling, import statements, and other auxiliary logic have been

omitted for brevity. The rule in examplerules.xml should be used as a model for writing your actual production

rule.

In summary, this rule iterates through the AccountRequests in the (modify) ProvisioningPlan. For each

AccountRequest, if there is a request to set the email address to a new value, it calls the appropriate method in

the connector to update the email attribute.

 //Variables to read Plan operation

 AccountRequest req = null;

 Operation operation = null;

 ProvisioningResult result = new ProvisioningResult();

 List<AccountRequest> accountRequests = plan.getAccountRequests();

 int size = accountRequests.size();

 ComponentInterface ci = null;

 //This method is used for initializing Component Interface

 public boolean initCI(String accNativeIdentity) {

 //provide CI name to get handle of the CI

 //In this example 'CI_PERSONAL_DATA' is component interface provided out of box

by PeopleSoft HRMS

 //which is used for updating personal data.

 ci = connector.getCIHandle("CI_PERSONAL_DATA");

 //first set the property 'KEYPROP_EMPLID' with the corresponding EMPLID

 ci.setPropertyByName("KEYPROP_EMPLID", accNativeIdentity);

 boolean userExists = false;

 // Get the employee record

 if (null != ci) {

 userExists = ci.get();

 }

 return userExists;

 }

 //This function will modify the email address if received in the plan

 public void doProvision() {

 HashMap emailObj = new HashMap();

 List<AccountRequest> accReqList = plan.getAccountRequests();

 String accNativeIdentity = null;

 String emailCollAttribute = null;

 if (!Util.isEmpty(accReqList)) {

 int accReqListSize = accReqList.size();

 for(AccountRequest accReq : accReqList) {

 if (accReq.getApplication().equals(application.getName())) {

 accNativeIdentity = accReq.getNativeIdentity();

 //Get the requests by passing schema attributes

 AttributeRequest emailAttribReq =

accReq.getAttributeRequest("EMAIL_ADDR");

 try {

 boolean userExists = initCI(accNativeIdentity);

Rules in IdentityIQ Page 89 of 170

 if(userExists) {

 if (null != emailAttribReq) {

 Object emailValue = emailAttribReq.getValue();

 String attrName = emailAttribReq.getName();

 if(null != emailValue){

updateEmail(emailCollAttribute,emailObj,ci,emailValue,emailAttribReq);

 }

 //Reset the component interface. This is required between some

operations

 //to make sure old data is not in the component interface.

 connector.resetCI();

 isReset = true;

 }

 } else {

 ProvisioningResult result = new ProvisioningResult();

 result.setStatus(ProvisioningResult.STATUS_FAILED);

 result.addError("User does not exist " + accNativeIdentity);

 }

 } catch (Exception e) {

 result.setStatus(ProvisioningResult.STATUS_FAILED);

 result.addError(e.getMessage());

 }

 }

 }

 }

 }

 // This function will update the email address

 /* 'COLL_EMAIL_ADDRESSES' is a collection attribute (of 3 sub attributes) needed to

support tracking multiple

 email addresses per person. Sub attributes:

PROP_EMAIL_ADDR,KEYPROP_E_ADDR_TYPE,PROP_PREF_EMAIL_FLAG

 */

 public void updateEmail(String emailCollection,HashMap emailObj,ComponentInterface

ci, Object emailValue, AttributeRequest req) {

 String type = "KEYPROP_E_ADDR_TYPE";

 boolean isUpdated = false;

 ProvisioningResult provisioningResult = new ProvisioningResult();

 emailCollection = "COLL_EMAIL_ADDRESSES";

 emailObj.put("PROP_EMAIL_ADDR", emailValue); // email address

 emailObj.put("KEYPROP_E_ADDR_TYPE", "BUSN"); // address type = business

 emailObj.put("PROP_PREF_EMAIL_FLAG", "Y"); // marked as primary

 //calling updateCollectionAttributes method of connector

 try {

 isUpdated = connector.updateCollectionAttributes(emailCollection,

emailObj, ci, type);

 } catch(Exception e) {

 provisioningResult.setStatus(ProvisioningResult.STATUS_FAILED);

 provisioningResult.addError(e.getMessage());

 req.setResult(provisioningResult);

 }

 if(isUpdated) {

 provisioningResult.setStatus(ProvisioningResult.STATUS_COMMITTED);

 }

 }

 // Logic to Read operation from Plan

 for (int i=0;i < size;i++) {

 req=accountRequests.get(i);

 operation=req.getOperation();

Rules in IdentityIQ Page 90 of 170

 if(operation.toString().equals("Modify")) {

 // call doProvision method

 doProvision();

 }

 }

 return result;

Integration

Description

An Integration rule is the rule type for a plan initializer rule, which contains custom logic that is executed
immediately before the provisioning plan is sent to a writeable connector or PIM/SIM to be executed.

This rule can be used to economize what data gets passed across to the integration or connector, instead of

sending lots of unneeded data (e.g. - loading just the name of the person being remediated or of the requester,

instead of passing the entire Identity object to the integration).

Definition and Storage Location

There is no UI option for specifying an Integration rule. It can only be specified through the XML of an

IntegrationConfig or within the ProvisioningConfig in an Application definition. It is referenced within a

<PlanInitializer> element.

<PlanInitializer>

 <Reference class="sailpoint.object.Rule" name="[Integration Rule Name]"/>

</PlanInitializer>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
identity sailpoint.object.Identity Reference to the Identity object for which the

provisioning request has been made

integration sailpoint.object.Integration
Config

Reference to the integrationConfig (or
ProvisioningConfig cast as an integrationConfig)
that defines provisioning to the application

plan sailpoint.object.Provisionin
gPlan

Reference to the ProvisioningPlan object
containing the requested provisioning action

Outputs:

Argument Type Purpose

result sailpoint.object.Provision
ingResult

Result indicating success or failure; failure halts the
provisioning action
Any other return type (including no return value)
allows provisioning processing to continue

Rules in IdentityIQ Page 91 of 170

Example

This example Integration rule retrieves the requester from the plan and loads just the name into the plan

arguments map. The integration executor or connector is eventually given a simplified version of the

provisioningPlan object; this simpler form does not contain a Requester list, so that information must be passed

through the arguments map if it is needed for the final provisioning action.

import java.util.ArrayList;

import java.util.List;

import sailpoint.object.Attributes;

import sailpoint.object.Identity;

import sailpoint.object.ProvisioningPlan;

/**

 * Get plan arguments into a map

 */

Map map = (Map) plan.getIntegrationData();

/* Retrieve an Identity from the plan’s Requesters list and save

 * the Identity’s name into the arguments map (usually only one in list)*/

String name = null;

if (plan.getRequesters() != null) {

 for (Identity requester : plan.getRequesters()) {

 name = requester.getName();

 }

 map.put("requester", name);

}

Notification/Assignment Rules

These rules are used in determining the recipient Identity for email notifications, escalations, approvals, etc.

These apply to different types of system objects, as noted in each rule description.

EmailRecipient

Description

An EmailRecipient Rule is used to specify additional email recipients for certification reminder notifications,

escalation notifications, and escalation reminder notifications.

Definition and Storage Location

This rule is associated to a certification in the UI through the Certification Definition.

Setup -> Certifications -> Create new certification of any type -> Notifications -> Notify before

Certification Expires -> Add a Reminder or Add Escalation -> Additional Email Recipients -> Recipient(s)

Rule

The rule name is recorded in a NotificationConfig within the CertificationDefinition XML. Email Recipient Rules

are recorded as the additionalRecipientsRuleName in a ReminderConfig for certification reminders and in an

EscalationConfig for certification escalations.

<entry key="certification.remindersAndEscalations">

Rules in IdentityIQ Page 92 of 170

 <value>

 <NotificationConfig enabled="true" escalationEnabled="true" remindersEnabled="true">

 <Configs>

<ReminderConfig additionalRecipientsPresent="true"

additionalRecipientsRuleName="[Email Recipient Rule Name]" … />

<EscalationConfig additionalRecipientsPresent="true"

additionalRecipientsRuleName="[Email Recipient Rule Name]" … />

 </Configs>

 </NotificationConfig>

 </value>

</entry>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
item sailpoint.object.Notifiable The Notifiable interface for objects that can

be reminded, escalated, and expired

Outputs:

Argument Type Purpose

identity String, List (of
strings)

The identity name or names to whom the email should be
sent

Example

This example EmailRecipient rule returns the name of the item owner’s manager as the email recipient.

import sailpoint.object.Identity;

Identity manager = new Identity();

Identity owner = item.getOwner();

if (null != owner) {

 manager = owner.getManager();

 if (null != manager)

 return manager.getName();

}

Escalation

Description

An Escalation rule identifies a new owner for a workItem or certification when an “escalation” of the item is

triggered. For a certification, this occurs when the certification has not been signed off and a triggering time

period or number of reminder notices is reached. For a workItem, this can be when an inactive owner is

detected or according to the notification schedule specified in the workItem’s notificationConfig.

Rules in IdentityIQ Page 93 of 170

NOTE: The notification configuration mechanism for certifications was updated in version 6.0 to allow more

flexibility in reminder notifications and escalations. Beginning with 6.0, each certification escalation only runs

once at the prescribed date and time, so the rule only needs to return one escalation recipient. Subsequent

escalations can be configured to return a different recipient using the same or a different rule. This can simplify

the logic required in any given certification escalation rule, since a single escalation rule is no longer required to

manage escalation through a chain of people.

Definition and Storage Location

Escalation rules can be associated to workItems and certifications in a few places in the UI. For certifications, this

is set in the Certification specification:

Setup -> Certifications -> create new certification (any type) -> Notifications -> Notify Before

Certification Expires -> Add Escalation -> Escalation Rule

An escalation rule can also be associated with certification revocations in the certification specification:

Setup -> Certifications -> create new certification (any type) -> Notifications -> Escalate Revocations ->

Escalation Rule

The references to the escalation rules for a certification are recorded in the CertificationDefinition XML in an

EscalationConfig (within a NotificationConfig).

<entry key="certification.remindersAndEscalations">

 <value>

 <NotificationConfig enabled="true" escalationEnabled="true">

 <Configs>

<EscalationConfig before="true" emailTemplateName="Work Item Escalation"

enabled="true" escalationRuleName="[Escalation Rule Name]" millis="604800000"/>

 </Configs>

 </NotificationConfig>

 </value>

</entry>

<entry key="remediation.remindersAndEscalations">

 <value>

<NotificationConfig enabled="true" escalationEnabled="true"

escalationMaxReminders="5">

 <Configs>

<EscalationConfig before="true" emailTemplateName="Work Item Escalation"

enabled="true" escalationRuleName="[Escalation Rule Name]" maxReminders="5"

millis="604800000"/>

 </Configs>

 </NotificationConfig>

 </value>

</entry>

The inactive owner workItem escalation rule is a system configuration option:

Gear menu -> Global Settings -> IdentityIQ Configuration -> WorkItem -> WorkItem Rules section ->

Inactive user work item escalation rule

That escalation rule name is recorded in the System Configuration XML.

<entry key="inactiveOwnerWorkItemForwadRule" value="escalate to spadmin"/>

Rules in IdentityIQ Page 94 of 170

There are many types of workItems that may be created in IdentityIQ – policy violations, certification

escalations, workflow approvals or provisioning forms, etc. Any of these workItems can contain

notificationConfigs that include an escalationConfig as shown on the CertificationDefinition above.

<NotificationConfig enabled="true" escalationEnabled="true"

escalationMaxReminders="5">

 <Configs>

<EscalationConfig before="true" emailTemplateName="Work Item Escalation"

enabled="true" escalationRuleName="[Escalation Rule Name]" maxReminders="5"

millis="604800000"/>

 </Configs>

</NotificationConfig>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

item sailpoint.object.Notifiable The Notifiable interface for the object (work item or
certification) being escalated

Outputs:

Argument Type Purpose
newOwner String The identity name to whom the item is being assigned in

escalation

Examples

This example Escalation rule escalates the item to the current owner’s manager. If that manager is an inactive

Identity, it continues up the manager chain until it finds an active Identity. If no new owner can be found (or if

the current owner value is null), it escalates to a default Identity – in this case, the Administrator.

import sailpoint.object.Identity;

// method returns owner of item (workItem)

Identity owner = item.getNotificationOwner(context);

// if no owner, escalate to spadmin

if (owner == null)

 return "spadmin";

else {

 // escalate to owner’s manager; if manager is inactive, keep

 // escalating until find active manager

 Identity newOwner = owner.getManager();

 while (newOwner != null && newOwner.isInactive()) {

 newOwner = newOwner.getManager();

 }

}

if (newOwner == null)

 return "spadmin";

Rules in IdentityIQ Page 95 of 170

else

 return newOwner.getName();

This example Escalation rule is intended for an inactive workItem owner rule; it assumes the current owner is

inactive, since the rule would only be called in that case, and it selects managers up the corporate hierarchy until

it finds an active manager. If no new owner can be found, it escalates to a default Identity – in this case, the

Administrator.

import sailpoint.object.Identity;

Identity newOwner = item.getNotificationOwner(context);

while (newOwner != null && newOwner.isInactive()) {

 newOwner = newOwner.getManager();

}

if (newOwner == null)

 return "spadmin";

else

 return newOwner.getName();

Approver

Description

An Approver rule once was called when a role or profile change was submitted for approval from the modeler or

when a candidate role was submitted for approval from a certification or role mining action. This rule has been

ignored by recent versions of IdentityIQ, having been replaced by the Role create, update, and delete business

process, but was inadvertently left in the System Configuration UI pages (Gear menu -> Global Settings ->

IdentityIQ Configuration -> Roles -> Rules section -> Role and profile change approver rule) until version 6.3. It

should not be used, and will not be run even if specified, in any version of IdentityIQ covered by this document.

ApprovalAssignment

Description

The ApprovalAssignment rule type was introduced in version 6.2. It is called during the approval generation

process in a workflow – specifically the Provisioning Approval Subprocess that ships with IdentityIQ versions

6.2+. It is passed the approval list as it has been built based on the the approval step specification, but it

provides one last hook where custom logic can be infused into the approval creation process. It could, for

example, change who is responsible for completing the approval process based on some attribute about the

request, the workItem, or the target Identity.

The main purpose of this rule is to allow approval ownership to be calculated based on extended attribute or

some other criteria that falls outside the scope of the default mechanisms for deriving the approval owner. It

could also be used to alter the approval scheme according to non-standard criteria, or even to bypass approval

entirely based on certain criteria.

Rules in IdentityIQ Page 96 of 170

Definition and Storage Location

Typically, this rule is specified as an argument to the Approve step of the LCM Provisioning workflow, which

invokes the Provisioning Approval Subprocess workflow, passing the rule name to it. It is run by the

buildCommonApprovals workflow library method, so it can be set in any workflow which invokes that method to

build the approval object.

The ApprovalAssignment Rule is specified as an argument to the workflow approval step which launches the

Provisioning Approval Subprocess workflow or as an argument to the workflow step which invokes the

buildCommonApprovals library method directly.

<arg name="approvalAssignmentRule" value="[Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

approvals List of
sailpoint.object.Workflow.Approval
objects

List of approval objects as created based on
the approval step specification in the
workflow; contains the definition and the
current state of the approval

approvalSet sailpoint.object.ApprovalSet Contains all the items to be approved in the
set

NOTE: This rule is also passed the entire list of args provided to the approval step of the workflow, each named

according to its name in the args map for the approval step.

Outputs:

Argument Type Purpose
approvals List of

sailpoint.object.Workflow.Approval
objects

The final approval list to use for this
approval proess

Example

This example rule retrieves the target Identity and redirects the approval ownership to a workgroup (called

“Security Team”) for all users whose location is “Zurich”. (IdentityName is an argument passed to the approval

step in the default LCM approval process. Any identity attribute could be chosen as a differentiating attribute

which should cause the approval ownership to be modified.)

import sailpoint.object.Workflow;

import sailpoint.object.Workflow.Approval;

import sailpoint.object.Identity;

Identity targetUser = context.getObjectByName(Identity.class, identityName);

if ("Zurich".equals(targetUser.getAttribute("location"))) {

 List newApprovals = null;

 if (approvals != null) {

Rules in IdentityIQ Page 97 of 170

 newApprovals = new ArrayList();

 for (Approval approval : approvals) {

 if (approval != null) {

 // update the approver/owner to the Security Team

 approval.setOwner("Security Team");

 newApprovals.add(approval);

 }

 }

 }

 return newApprovals;

} else

 return approvals;

FallbackWorkItemForward

Description

The FallbackWorkItemForward rule is used to select a fallback owner for a certification work item to prevent

self-certification. This runs during certification creation when a predelegation rule in a certification is

attempting to assign an item to an owner that will result in self-certification, as well as any time an existing

certification work item is forwarded to a different user through automated forwarding (e.g. to the user

configured as Forwarding User on the User Preferences page or through execution of the inactive user work

item escalation rule or global work item forwarding rule). Of course, this does not apply for users who have been

allowed to self-certify (per the allowSelfCertification option in the system configuration).

NOTE: To allow self-certification, you can choose the configuration option to allow self certification for all

certifiers (or for one of the supported subsets of certifiers). This can be set through the UI here:

Gear menu -> Compliance Manager -> Behavior -> Allow Self Certifications for: All Certifiers / System

and Certification Administrators / System Administrators only

Definition and Storage Location

The default fallback forwarding rule is set in the system configuration through the UI’s System Setup menu.

Gear menu -> Global Settings -> IdentityIQ Configuration -> WorkItems -> Self-Certification Work Item

Forwarding Rule

The reference to the rule is recorded in the System Configuration XML.

<entry key="fallbackWorkItemForwardRule" value="[FallbackWorkItemForward Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
item sailpoint.object.WorkItem Reference to the workItem (some workItem arguments

may not yet be set)

owner sailpoint.object.Identity Reference to the Identity who currently owns the work
item

creator String Name of Identity who created the certification belonging

Rules in IdentityIQ Page 98 of 170

to this workItem
certifiers java.util.List List of certifier names for the certification belonging to the

workItem

name String Name of the certification belonging to the workItem (may
be null if not created yet)

type sailpoint.object.Certificatio
n.Type enumeration

Type of the certification belonging to the workItem

Outputs:

Argument Type Purpose

newOwner String or
sailpoint.object.Identity

Identity object or name of Identity object who should be the
new owner of theworkItem

Example

This example FallbackWorkItemForward rule first tries to forward the item to the certification owner. If the

certification does not yet exist so its owner cannot be determined, it iterates through the certifiers list and sends

the item to the first certifier who is not the current workItem owner. If none of these successfully identifies a

certifier, it sends the workItem to the Administrator.

import sailpoint.object.Certification;

import sailpoint.object.Identity;

string approver = null;

if (null != name) {

 Certification cert = getObjectByName(Certification.class, name);

 approver = cert.getOwner();

}

if (null == approver) {

for (string certifier : certifiers) {

 if (certifier != owner.getName()

 return certifier;

}

return "spadmin";

WorkItemForward

Description

A WorkItemForward rule examines a WorkItem and determines whether or not it needs to be forwarded to a

new owner for further analysis or action. Only one WorkItemForward rule can be in use at any time for an

installation; it is selected in the system configuration and is called every time a WorkItem is opened and any

time it is forwarded through the user interface.

Definition and Storage Location

The WorkItemForward rule for the installation is set through the UI in the System Setup options.

Rules in IdentityIQ Page 99 of 170

Gear menu -> Global Settings -> IdentityIQ Configuration -> WorkItems -> Global WorkItem Forwarding

Rule

The rule name is recorded as the value for the workItemForwardRule key in the System Configuration XML.

<entry key="workItemForwardRule" value="forward to Spadmin"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

item sailpoint.object.WorkItem Reference to the workItem being opened (some
workItem arguments may not yet be set)

owner sailpoint.object.Identity Reference to the Identity who currently owns the work
item

identity sailpoint.object.Identity Reference to the same Identity object as owner
(provided for backward compatibility to older versions of
this rule)

Outputs:

Argument Type Purpose

newOwner String or
sailpoint.object.Identity

Identity object or name of Identity object
who should receive the workItem

Example

This example WorkItemForward rule attempts to find an Identity with an email address by examining the owner

first and then checking up the manager chain for an Identity with an email address. The first Identity in the

hierarchy found to have an email address is assigned as the workItem owner. If none is found with an email

address, the original owner is left as the workItem owner.

import sailpoint.object.Identity;

Identity newOwner = owner;

String email = owner.getEmail();

if (email == null || email.length() == 0) {

 newOwner = owner.getManager();

 while (newOwner != null) {

 email = newOwner.getEmail();

 if (email != null && email.length() > 0)

 break;

 newOwner = newOwner.getManager();

 }

}

if (email == null || email.length() == 0) {

 // This defaults to not changing the owner,

 // but it could alternatively assign it to a fixed user.

 newOwner = owner;

 log.warn("no owner with email found");

Rules in IdentityIQ Page 100 of 170

}

return newOwner;

Owner Rules

Owner rules assign ownership of certain system objects to a given Identity. Their usage locations are included in

the Description section of each rule type.

Owner

See Owner in Form/Provisioning Policy-related Rules section.

Policy Owner

See PolicyOwner in Policy/Violation Rules section.

GroupOwner

Description

The GroupOwner rule is used to assign group owners for the groups created from a GroupFactory.

Definition and Storage Location

The GroupOwner rule is set for a GroupFactory through the UI on the Groups page.

Setup -> Groups -> select or create a Group -> Group Owner Rule

The reference to the rule is recorded in the GroupFactory XML.

<GroupOwnerRule>

<Reference class="sailpoint.object.Rule" id="402846023a65e596013a65e6e8020274"

name="Group Ownership Rule - Highest Ranking Member of Sub-Group"/>

</GroupOwnerRule>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

factory sailpoint.object.GroupFactory Reference to the groupFactory object from
which the groups are generated

group sailpoint.object.GroupDefinition Reference to a single GroupDefinition from
the factory

Outputs:

Argument Type Purpose

owner sailpoint.object.Identity Identity object or name of the Identity assigned as the

Rules in IdentityIQ Page 101 of 170

or string group owner

Example

This example GroupOwner rule assigns group ownership to the employee in the group with the lowest

employee ID (the employee with the most seniority at the company).

import sailpoint.object.QueryOptions;

import sailpoint.object.Identity;

QueryOptions qo = new QueryOptions();

// Group defined as a filter so add

// filter to queryOptions to get members list

qo.addFilter(group.getFilter());

Iterator identities = context.search(Identity.class, qo);

//Find the employee with the lowest employee ID.

Identity emp = null;

String empId = null;

Identity owner = null;

String ownerEmpId = null;

while (identities.hasNext()) {

 emp = identities.next();

 empId = emp.getAttribute("empId");

 if (empId != null && (ownerEmpId == null ||

 empId.compareTo(ownerEmpId) < 0)) {

 owner = emp;

 ownerEmpId = empId;

 }

}

//When all of the employee IDs in the subgroup are null, default to spadmin.

if (owner == null) {

 return "spadmin";

}

return owner;

Scoping Rules

Scoping rules are used to assign scopes to Identities when scoping is enabled. An Identity’s assigned scope

determines whether other users can see and make requests for that Identity. Controlled, or authorized, scopes

determine what objects each Identity can see and make requests around; controlled scopes are not determined

by the scoping rules.

ScopeCorrelation

Description

The ScopeCorrelation rule evaluates one or more Identity attributes to select a scope or list of scopes that

applies to the Identity. If it returns multiple scopes, the ScopeSelection rule chooses which of the scopes to

assign. There is only one ScopeCorrelation rule per IdentityIQ installation.

Rules in IdentityIQ Page 102 of 170

Definition and Storage Location

The ScopeCorrelation rule is set through the UI on the Configure Scoping page.

Gear menu -> Global Settings -> Scopes -> Configure Scoping -> Scope Correlation Rule

The reference to the rule is recorded in the Identity ObjectConfig XML.

<entry key="scopeCorrelationRule" value="[Scope Correlation Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
identity sailpoint.object.Identity Reference to the identity being assigned a

scope

scopeCorrelationAttribute String Name of the scope correlation attribute
specified in the scoping configuration

scopeCorrelationAtributeValue String The value for the correlation attribute on the
Identity

Outputs:

Argument Type Purpose

scopes sailpoint.object.Scope or
java.util.List<Scope>

One or more scopes that meet the rule’s
criteria for assignment to the Identity

Example

This example ScopeCorrelation rule assigns Identities with a job title of “Administrator” to the “All” scope, which

is the highest level scope in this company’s scope hierarchy. Otherwise, it assigns the Identity to the scope

whose name corresponds to the Identity’s “region” attribute, creating a new scope if no matching scope exists.

import sailpoint.object.Scope;

Scope all = context.getObjectByName(Scope.class, "All");

// if scope "All" doesn't exist yet, create it

if (all == null) {

 all = new Scope("All");

 context.saveObject(all);

 String allId = all.getId();

 all.setDisplayName("All");

 all.setPath(allId);

 all.setAssignedScope(all);

 context.saveObject(all);

 context.commitTransaction();

}

String jobTitle = identity.getStringAttribute("jobTitle");

// Assign scope "all" to any Identity with the jobTitle of "Administrator"

if (“Administrator”.equals(jobTitle)) {

Rules in IdentityIQ Page 103 of 170

 return all;

}

// Since the user's scope isn't "all", get region and check if it exists as scope

String region = identity.getStringAttribute("region");

if (region == null) {

return null;

}

try {

 Scope scope = context.getObjectByName(Scope.class, region);

 if (scope == null) {

 // If it doesn't exist, then we need to create it as a child of the All scope

 scope = new Scope(region);

 context.saveObject(scope);

 all.addScope(scope);

 scope.setDisplayName(region);

 scope.setAssignedScope(scope);

 context.saveObject(scope);

 context.saveObject(all);

 context.commitTransaction();

 }

 return scope;

} catch (GeneralException e) {

 log.error(“Error creating scope.”, e);

 return null;

 }

ScopeSelection

Description

The ScopeSelection rule runs to select a single scope to assign to an Identity when the scope attribute

correlation or scopeCorrelation rule have identified multiple possible scopes for the Identity. There is only one

scopeSelection rule per IdentityIQ installation.

Definition and Storage Location

The ScopeSelection rule is set through the UI on the Configure Scoping page.

Gear menu -> Global Settings -> Scopes -> Configure Scoping -> Scope Selection Rule

The reference to the rule is recorded in the Identity ObjectConfig XML.

<entry key="scopeSelectionRule" value="[Scope Selection Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
identity sailpoint.object.Identity Reference to the identity being assigned a scope

scopeCorrelation
Attribute

String Name of the scope correlation attribute specified in
the scoping configuration

Rules in IdentityIQ Page 104 of 170

scopeCorrelation
AtributeValue

String The value for the correlation attribute on the Identity

candidateScopes java.util.List
<sailpoint.object.Scope>

List of scopes identified as candidates for assignment
to the Identity; rule should select one of these and
return it as the scope to assign

Outputs:

Argument Type Purpose

scope sailpoint.object.Scope Scope to be assigned to the Identity

Example

This example ScopeSelection rule looks at the scope hierarchy above the identified candidate scopes to find a

scope that matches the identity’s “department” attribute. This rule could be used for an installation where the

scope hierarchy is based on a combination of department and location, as illustrated here:

 Accounting

 Dallas

 New York

 Marketing

 Los Angeles

 New York

If the scope correlation attribute is location, an Identity who works in New York would have both New York

scopes identified as candidate scopes. This ScopeSelection rule would choose the first one if he were in the

Accounting department in New York.

import sailpoint.object.Scope;

Scope selected = null;

// Use the identity's department to select the correct subscope.

String dept = identity.getAttribute("department");

if (null != dept) {

 for (Iterator it=candidateScopes.iterator(); it.hasNext();) {

 Scope current = (Scope) it.next();

 // If any of the ancestor scopes have this user's department

 // name, then use it.

 Scope parent = null;

 while (null != (parent = current.getParent())) {

 if (dept.equals(parent.getName())) {

 selected = current;

 break;

 }

 }

 }

}

return selected;

Rules in IdentityIQ Page 105 of 170

Identity and Account Mapping Rules

There are three rules that can be set in the Identity Mapping windows:

• IdentityAttribute for specifying the identity attribute source when it is not mapped from a single

application attribute

• IdentityAttributeTarget for specifying transformations on attributes being pushed to targets

• Listener for responding to value changes on an attribute

A LinkAttribute rule can specify the source mapping for link attributes on the Account Mapping window.

IdentityAttribute

Description

When identity attribute mapping depends on multiple application attributes or other complex evaluations, an

IdentityAttribute rule can be specified to control that mapping. IdentityAttribute rules can be specified as

application-specific or global rules.

Definition and Storage Location

An IdentityAttribute rule is connected to the Identity ObjectConfig in the UI through the Identity Mapping

Sources.

Gear menu -> Global Settings -> Identity Mappings -> Add New Attribute (or edit existing attribute) ->

Add Source (or click an existing source to edit it) -> Application Rule or Global Rule -> Rule

A reference to the rule gets stored in the Identity ObjectConfig XML within the AttributeSource element; if the

rule is application-specific, an ApplicationRef is also recorded within the AttributeSource.

<AttributeSource name="[System-assigned name for mapping source]”>

 <!—ApplicationRef only here if rule is app-specific, not global -->

 <ApplicationRef>

<Reference class=”sailpoint.object.Application” id=”402846023a65e596013a65e7acaa0506”

name=”[application name]”/>

 </ApplicationRef>

 <RuleRef>

<Reference class=”sailpoint.object.Rule” id=”402846023a65e596013a65e7838704d3”

name=”[IdentityAttribute Rule Name]”/>

 </RuleRef>

</AttributeSource>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
environment java.util.Map Map of arguments to the aggregation or refresh

task that is executing the rule in attribute
promotion

identity sailpoint.object.Identity Reference to identity object that represents the
user being aggregated/refreshed

Rules in IdentityIQ Page 106 of 170

attributeDefinition sailpoint.object.Attribute
Definition

Reference to the attributeDefinition object for this
attribute

link sailpoint.object.Link Only included as an argument for application
rules, not global rules

attributeSource sailpoint.object.Attribute
Source

Attribute source definition (see AttributeSource
object XML above for an example)

oldValue java.lang.Object Attribute value of target identity attribute before
the rule runs

Outputs:

Argument Type Purpose

attributeValue java.lang.Object Value to record for the attribute

Example

This example IdentityAttribute rule examines the “userCode” link attribute from the application schema and sets

the isContractor Identity attribute (custom attribute) to true when the userCode is 4300.

import sailpoint.object.Link;

import sailpoint.object.Attributes;

String isContractor = "false";

Attributes attrs = link.getAttributes();

if (attrs != null) {

 int userCode = attrs.getInt("userCode");

 if (userCode == 4300) {

 isContractor = "true";

 }

}

return isContractor;

IdentityAttributeTarget

Description

Identity mapping targets are defined when attribute changes are to be propagated to accounts on other

applications. If any manipulation or transformation is required on the attribute value before it can be written to

the target application, an IdentityAttributeTarget rule is used to perform that action.

Definition and Storage Location

An IdentityAttributeTarget rule is connected to the Identity ObjectConfig in the UI through the Identity Mapping

Targets.

Gear menu -> Global Settings -> Identity Mappings -> Add New Attribute (or edit existing attribute) ->

Add Target (or click an existing Target to edit it) -> Transformation Rule

A reference to the rule gets stored in the Identity ObjectConfig XML within an AttributeTarget element; since

targets are always application-specific, an ApplicationRef is also recorded within the AttributeTarget.

Rules in IdentityIQ Page 107 of 170

<AttributeTarget name="status">

 <ApplicationRef>

 <Reference class="sailpoint.object.Application"

id="402846023a65e596013a65e7b2e4050b" name="XYZ Application"/>

 </ApplicationRef>

 <RuleRef>

 <Reference class="sailpoint.object.Rule" id="402846023ab1fc5e013ab3bccce40197"

name="[IdentityAttributeTarget Rule Name]"/>

 </RuleRef>

</AttributeTarget>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
value java.lang.Object Value of the Identity attribute (can be single

value or list)

sourceIdentityAt
tribute

sailpoint.object.objectAttribute Reference to the source objectAttribute for this
target

sourceIdentityAt
tributeName

string Name of the identity attribute for this target

sourceAttribute
Request

sailpoint.object.ProvisioningPla
n.AttributeRequest

Reference to the ProvisioningPlan
AttributeRequest that is setting the attribute on
the identity

target sailpoint.object.AttributeTarget Reference to the AttributeTarget that is being
processed

identity sailpoint.object.Identity Reference to the Identity being processed

project sailpoint.object.ProvisioningPro
ject

Reference to the ProvisioningProject that
contains the changes being requested

Outputs:

Argument Type Purpose

attributeValue java.lang.object Transformed value that will be pushed to the target

Example

This example IdentityAttributeTarget rule transforms a Boolean inactive flag to a string value “inactive” for the

application attribute. This can be important when different applications record related values in different

formats.

import sailpoint.tools.Util;

if (Util.otob(value) == true)

 return "inactive";

else

 return "active";

Rules in IdentityIQ Page 108 of 170

Listener

Description

A Listener rule is triggered when the value of an attribute changes and performs logic in response to that value

change. The rule is called during aggregation or refresh when the attribute value changes.

Definition and Storage Location

A Listener rule is connected to the Identity ObjectConfig in the UI through the Identity Mapping Sources.

Gear menu -> Global Settings -> Identity Mappings -> Add New Attribute (or edit existing attribute) ->

Value Change Rule

A reference to the rule gets stored on the ObjectAttribute in the Identity ObjectConfig XML.

<ListenerRule>

 <Reference class="sailpoint.object.Rule" id="402846023a65e596013a65e7853c04d5"

name="Example Change Notification Rule"/>

</ListenerRule>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
environment java.util.Map Task arguments for the task that invoked the rule

identity sailpoint.object.Identity Reference to the Identity to whom the attribute
applies

object sailpoint.object.Identity Reference to the Identity to whom the attribute
applies; passed in both variables for compatibility
with generic rules

attributeDefinition sailpoint.object.objectAt
tribute

Definition of the ObjectAttribute

attributeName String Name of the ObjectAttribute

oldValue java.lang.Object Original (pre-change) value of the attribute

newValue java.lang.Object New (post-change) value of the attribute

Outputs: None; the rule performs actions that are outside of the attribute modification process so IdentityIQ

does not expect or act upon a return value from this rule.

Example

This example Listener rule sends an email to the Identity’s manager if the Identity’s UserType attribute changes.

import sailpoint.object.Identity;

import sailpoint.object.Certification;

import sailpoint.object.EmailOptions;

import sailpoint.object.EmailTemplate;

import sailpoint.object.Configuration;

import sailpoint.api.ObjectUtil;

import java.util.List;

Rules in IdentityIQ Page 109 of 170

import java.util.ArrayList;

import java.util.Map;

import java.util.HashMap;

// Send a mail to the manager

Identity manager = identity.getManager();

if (manager != null) {

 try {

 HashMap args = new HashMap(identity.getAttributes());

 args.put("attributeName", attributeName);

 args.put("oldValue", oldValue);

 args.put("newValue", newValue);

 EmailTemplate template = context.getObjectByName(EmailTemplate.class, "Value

Change Notification");

 List emailRecipientAddresses = ObjectUtil.getEffectiveEmails(context, manager);

 EmailOptions ops = new EmailOptions(emailRecipientAddresses, args);

 context.sendEmailNotification(template, ops);

 } catch(Exception e) {

 log.error("Error occurred trying to send an email to the manager."

 + e.getMessage());

 }

} else {

 log.warn("UserType ValueChange Rule: "

 + "Identity " + identity.getName() + " has no manager");

}

LinkAttribute

Description

A LinkAttribute rule can be used as the source for an Account Mapping activity, promoting account attributes

from Links during aggregation. LinkAttribute rules can be specified as application-specific rules or as a global

rule.

Definition and Storage Location

A LinkAttribute rule is connected to the Link ObjectConfig in the UI through the Account Mapping Sources.

Gear menu -> Global Settings -> Account Mappings -> Add New Attribute (or edit existing attribute) ->

Add Source (or click an existing source to edit it) -> Application Rule or Global Rule -> Rule

A reference to the rule gets stored in the Link ObjectConfig XML within the AttributeSource element; if the rule

is application-specific, an ApplicationRef is also recorded within the AttributeSource.

<AttributeSource name="[System-assigned name for source]">

 <!-- ApplicationRef only here if rule is app-specific, not global -->

 <ApplicationRef>

<Reference class="sailpoint.object.Application" id="402846023a65e596013a65e7acaa0506"

name="[application name]"/>

 </ApplicationRef>

 <RuleRef>

<Reference class="sailpoint.object.Rule" id="402846023a65e596013a65e7838704d3"

name="[LinkAttribute Rule Name]"/>

 </RuleRef>

</AttributeSource>

Rules in IdentityIQ Page 110 of 170

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

environment java.util.Map Map of the task arguments from the aggregation
task

link sailpoint.object.Link Reference to the link object from which the
account attribute value is being
extracted/manipulated

Outputs:

Argument Type Purpose
value java.lang.object Contains the value for the account attribute

Example

This example LinkAttribute rule transforms a string date read from the Link to store it in an account attribute of

type Date.

import sailpoint.object.Identity;

import sailpoint.tools.Util;

String acctValue = link.getAttribute("acct_lastLogin");

return Util.stringToDate(acctValue);

Form/Provisioning Policy-related Rules

These rules are used to set various fields or options on Forms (workflow, reporting) or Templates (provisioning

policies). The rule types that relate to these objects are:

• AllowedValues: determines values displayed in drop-down list boxes on workflow forms, provisioning
policies, and report forms

• FieldValue: rule for determining field value; on provisioning policy Templates, the calculated value for
the field is used instead of presenting the field to a user for data input, whereas on Forms, this
populates a default value for the field but does not prevent field presentation to a user

• Validation: rule for validating the contents of a field on a Template or Form; runs on submission of the
form and prevents data from being submitted if the field fails validation (redisplays form to user displays
error message)

• Owner: rule for determining field owner; only applies to Templates and is used to determine which user
will be presented each field for data gathering

NOTE: Most of these rules are passed an Identity object. In provisioning policies, this is the Identity to whom

the provisioning request pertains. An Identity may or may not be relevant to forms, so this Identity field may

sometimes be null.

Rules in IdentityIQ Page 111 of 170

FieldValue

Description

The FieldValue rule sets the default value for a form field. In a provisioning policy, fields that are assigned a

value with a rule (or any other method) are usually not presented to a user on a data-gathering form, so this

becomes the defined value for the field, not a just default that can be overridden.

Definition and Storage Location

FieldValue rules are specified in the UI in the field definition of a provisioning policy or form. From the form

editor or provisioning policy editor UI in 7.0, follow this navigation:

Add Field (or click an existing field to edit) -> Value: select Rule -> Default Value Rule

In 7.1, with the new form editor UI, the navigation is:

Add or edit a Field -> Value Settings -> Value: select Rule

The rule is referenced within the Field element of the Form object’s XML.

<Field name="Field1" type="string">

 <RuleRef>

 <Reference class="sailpoint.object.Rule" name="[FieldValue Rule Name]"/>

 </RuleRef>

</Field>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
identity sailpoint.object.Identity Reference to the Identity for whom the field value

is being set

NOTE: FieldValue rules are called from several different places inside IdentityIQ, and the list of arguments

provided by each call can vary. As an example, if a field has dependencies, those are included in the arguments

map to the rule. This rule type is a good candidate for using the rule code provided in Printing the Beanshell

Namespace to understand the full set of arguments available to the rule.

Outputs:

Argument Type Purpose

value java.lang.object The value to set for the field

Example

This FieldValue rule generates a password value based on the associated Identity and application password

policy.

Rules in IdentityIQ Page 112 of 170

import sailpoint.api.PasswordGenerator;

import sailpoint.object.PasswordPolicy;

import sailpoint.object.Application;

PasswordGenerator psswdGen = new PasswordGenerator(context);

String appName = field.getApplication();

Application app = context.getObjectByName(Application.class,appName);

String psswd = psswdGen.generatePassword(identity,app);

return psswd;

AllowedValues

Description

An allowedValues rule specifies the set of values to display in the drop-down list in a listbox presented on a

provisioning policy or other form.

Definition and Storage Location

AllowedValues rules are specified in the UI in the field definition of a provisioning policy or form. From the form

editor or provisioning policy editor UI in 7.0, follow this navigation:

Add Field (or click an existing field to edit) -> Allowed Values: select Rule -> Allowed Values Rule

In 7.1, with the new form editor UI, the navigation is:

Add or edit a Field -> Value Settings -> Allowed Values: select Rule

The rule is referenced within the Field element of the Template or Form object’s XML.

<Field displayName="Field Name" name="fieldname" … >

 <AllowedValuesDefinition>

 <RuleRef>

<Reference class="sailpoint.object.Rule" id="402846023ac1d3f6013b04b2acc6078a"

name="[Allowed Values Rule Name]"/>

 </RuleRef>

 </AllowedValuesDefinition>

</Field>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
identity sailpoint.object.Identity Reference to the Identity to whom the provisioning

policy or form applies

form sailpoint.object.Form Reference to the form object holding the field where
the allowed values are being set; for provisioning
policies, this is a form built at run-time based on the
Template

field sailpoint.object.Field Reference to the field object in which the allowed

Rules in IdentityIQ Page 113 of 170

values are being set

NOTE: The list of arguments provided to this rule can vary based on the field for which it is defined (e.g. there

may be dependencies which would be included as arguments to the rule). This rule type is a good candidate for

using the rule code provided in Printing the Beanshell Namespace to understand the full set of arguments

available inside it.

Outputs:

Argument Type Purpose

values java.lang.Object Object (possibly a collection) containing the allowed values
for a given field

Example

This example AllowedValues rule populates a drop-down list with only the regions that are currently assigned to

existing Identities, listing them in alphabetical order.

import java.util.List;

import java.util.ArrayList;

import sailpoint.object.QueryOptions;

import sailpoint.object.Identity;

List values = new ArrayList();

QueryOptions qo = new QueryOptions();

qo.setDistinct(true);

qo.setOrderBy("region");

Iterator regions= context.search(Identity.class, qo, "region");

while (regions.hasNext()) {

 String region = (String) regions.next()[0];

 values.add(region);

}

return values;

Validation

Description

A Validation rule examines a Field value and determines whether it is valid, as specified in the rule logic. If it is

not valid, one or more messages are returned from the rule; if the field value is valid, the rule should return null.

When messages are returned from the rule, the form is reloaded for the user to correct the error and the

messages are displayed on it.

Definition and Storage Location

Validation rules are specified in the UI in the field definition of a provisioning policy or form. From the form

editor or provisioning policy editor UI in 7.0, follow this navigation:

Add Field (or click an existing field to edit) -> Validation: select Rule -> Validation Rule

Rules in IdentityIQ Page 114 of 170

In 7.1, with the new form editor UI, the navigation is:

Add or edit a Field -> Value Settings -> Validation: select Rule

The rule is referenced within the Field element of the Template or Form object’s XML.

<Field displayName="Field Name" name="fieldname" … >

 <ValidationRule>

 <Reference class="sailpoint.object.Rule" id="402846023ac1d3f6013b0a3a2d0707d8"

name="[Validation Rule Name]"/>

 </ValidationRule>

</Field>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

identity sailpoint.object.Identity Identity to whom the field value relates
app sailpoint.object.Application Reference to the Application object to which

the Form applies

form sailpoint.object.Form Reference to the Form object on which the
Field exists

field sailpoint.object.Field Reference to the Field being validated

value java.lang.Object Object representing the field value

NOTE: Like the Field Value and Allowed Values rules, this rule may have different sets of arguments provided

based on the field for which it is defined; specifically, field dependencies can impact the argument set. This rule

type is a good candidate for using the rule code provided in Printing the Beanshell Namespace to understand the

full set of arguments available inside it.

Outputs:

Argument Type Purpose

messages sailpoint.tools.Message,
String, or Collection
(List) of Messages or
strings

List of messages from the validation process; IdentityIQ
can process a Message, string, or a collection of Messages
or strings as the return value from this rule
If any non-null value is returned, this means validation has
failed.

Example

This example Validation rule checks that the Identity name entered corresponds to an existing Identity who is a

Manager.

String name = (String) value;

Identity ident = context.getObject(Identity.class, name);

if (null == ident)

 return “Identity does not exist.”;

else if (!(ident.isManager()))

Rules in IdentityIQ Page 115 of 170

 return “Identity is not a manager.”;

return null;

This example Validation rule checks that the email address entered is in a correct format (containing an @ and a

period .) and that it is not already connected to an Identity in the system.

import java.util.ArrayList;

import sailpoint.object.*;

import java.util.Iterator;

ArrayList messages = new ArrayList();

String inputVal = (String)value;

if (inputVal.indexOf("@") < 0) {

 messages.add("Need an @ sign in a valid email address."); }

if (inputVal.indexOf(".") < 0) {

 messages.add("Need a . in a valid email address."); }

QueryOptions qo = new QueryOptions();

qo.addFilter(Filter.eq("email",inputVal));

List users = context.getObjects(Identity.class,qo);

if (!users.isEmpty()) {

 Iterator iter = users.iterator();

 while (iter.hasNext()) {

 Identity identity = (Identity)iter.next();

 messages.add("Email address already in use by " + identity.getName());

 }

}

return messages;

Owner

Description

Owner Rules are used by role or application provisioning policies to determine the owner of the provisioning

policy or its policy fields. The owner of a field or policy is the Identity who will be asked to provide any input

values for the provisioning activity that could not be identified or calculated automatically by the system.

NOTE: Fields have an Owner field whether they belong to provisioning policies or forms. However, for forms,

the field owner value is ignored. Therefore an Owner rule is only useful for provisioning policy fields.

Definition and Storage Location

Owner rules are specified in the UI in the field definition of a provisioning policy or as the provisioning policy

owner. When creating or editing a provisioning policy (in an Application or Role definition), an Owner rule can

be specified for the policy owner or for the Field owner.

(Provisioning Policy) Owner: select Rule -> Owner Rule

or

(within Provisioning Policy) Add Field (or click an existing field to edit) -> Owner: select Rule -> Owner

Rule

Rules in IdentityIQ Page 116 of 170

or

(within Provisioning Policy in 7.1) add or edit field-> Type Settings -> Owner: select Rule

The rule is referenced within the Bundle or Application object’s XML in the Form element or in the Field element

to which the rule relates.

<Form name="test prov policy">

 <OwnerDefinition>

 <RuleRef>

 <Reference class="sailpoint.object.Rule" id="402846023ac1d3f6013ae71128ba03dd"

name="[Owner Rule Name for Provisioning Policy]"/>

 </RuleRef>

 </OwnerDefinition>

 <Field displayName="Field Name" name="fieldname" type="string">

 <OwnerDefinition>

 <RuleRef>

 <Reference class="sailpoint.object.Rule" id="402846023ac1d3f6013ae71128ba03f7"

name="[Owner Rule Name for Field]"/>

 </RuleRef>

 </OwnerDefinition>

 </Field>

</Form>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
identity sailpoint.object.Identity Reference to the Identity being provisioned

role sailpoint.object.Bundle Reference to the role object involved in the provisioning
process (if applicable)

application sailpoint.object.Application Reference to the application object to which the
provisioning will occur

template sailpoint.object.Template Reference to the template object that defines the
provisioning policy form

field sailpoint.object.Field Reference to the field object being assigned an owner (if
any)

NOTE: This rule may have different sets of arguments provided based on the field for which it is defined;

specifically, field dependencies can impact the argument set. This rule type is a good candidate for using the

rule code provided in Printing the Beanshell Namespace to understand the full set of arguments available inside

it.

Outputs:

Argument Type Purpose

identity sailpoint.object.Identity or
string

The rule returns an Identity object, an Identity
name, or one of several special keywords that
can be used to identify the appropriate owner
based on the role or application to which the

Rules in IdentityIQ Page 117 of 170

provisioning policy is attached.
Those keywords are:

• “IIQParentOwner”: resolves to the
owner of the application or role to
which the policy belongs

• “IIQRoleOwner”: the owner of the role
to which the policy belongs

• “IIQApplicationOwner”: the owner of
the application to which the policy
belongs

Example

This example Owner rule selects a different owner (in this case, a workgroup) for the provisioning form based on

whether the Identity being provisioned for is an employee or a contractor.

import sailpoint.object.Identity;

String status = identity.getAttribute("status");

Identity provOwner = null;

if ("Contractor".equals(status)) {

provOwner = (Identity) context.getObject(Identity.class,

"ContractorAppoverWorkgroup");

} else {

provOwner = (Identity) context.getObject(Identity.class, "EmployeeAppoverWorkgroup");

}

return provOwner;

Workflow Rules

All rules specified within workflows (business processes) are rules of type Workflow. Workflow rules return an

“object” which can be any value required for the functionality that invokes the rule. Workflow rules are used for

initializing variables, controlling transitions between steps, and even performing the action within steps.

NOTE: Though they are not explicitly named in the rule signature, all workflow arguments and process variables

are automatically available to all workflow rules.

Workflow

Description

All rules specified as part of workflows are rules of type Workflow. This includes rule that set values for

workflow variables and step arguments, rules that determine transition conditions between steps, and rules that

contain step execution instructions.

Definition and Storage Location

Workflow rules are defined in several places within the business process editor in the UI.

Rules in IdentityIQ Page 118 of 170

Setup -> Business Processes -> New Process (or edit an existing process) -> any of the options listed below

• Process Variables -> Initial Value Rule

• Transition Rule

• Step -> Details -> Action Rule

• Step -> Arguments -> Value Rule

References to the rules are stored in the workflow XML. The rule ID value for is recorded in the corresponding

element.

Process Variable initialization rule:

 <Variable initializer="rule:402846023ac1d3f6013ae1d2be300363" name="var1"/>

Transition rule:

 <Step … >

 <Transition to="Process1" when="rule:402846023ac1d3f6013ae1d1cd280361"/>

 </Step>

Step action rule:

 <Step action="rule:402846023ac1d3f6013ae1d0b59e035f" name="Process1">

 </Step>

Step Argument initialization rule:

 <Step … >

 <Arg name="arg1" value="rule:402846023ac1d3f6013ae1d338800364"/>

 </Step>

NOTE: Manually-created workflow XML can reference the rule by name (e.g value=”rule:My Rule Name”);

workflows created through the business process editor will use the rule ID as shown above.

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

wfcontext sailpoint.workflow.workflow
Context

Reference to the current workflowContext

handler sailpoint.workflow.workflow
Handler

Workflow handler connected to the current
workflowContext

workflow sailpoint.object.workflow Current workflow definition

step sailpoint.object.step Current step in the workflow
approval sailpoint.object.approval Current approval being processed

item sailpoint.object.workItem workItem being processed

NOTE: step, approval, and/or item may be null for some usages of this rule type.

Rules in IdentityIQ Page 119 of 170

NOTE: Since the list of arguments provided to rules of this type can vary based on their usage, this rule type is a

good candidate for using the rule code provided in Printing the Beanshell Namespace to understand the full set

of arguments available inside each instance.

Outputs:

Argument Type Purpose
object java.lang.object Value to be returned from the rule (depends on the rule’s

usage)

Example

This example workflow rule is a step action rule that determines the approver for a workItem based on the

approvalScheme process variable values. If no approvers are found, it uses the fallbackApprover. If the

approver list contains the Identity who initiated the workflow (i.e. the user who made the request that invoked

the workflow), that Identity is removed from the list.

import sailpoint.object.ApprovalSet;

import sailpoint.object.ProvisioningPlan;

import sailpoint.object.WorkItem.State;

List approvers = new ArrayList();

if (approvalSet != null) {

 List items = approvalSet.getItems();

 // By default there is one item for all of the edits

 ApprovalItem item = null;

 if (Util.size(items) > 0)

 item = items.get(0);

 if (item != null) {

 approvers = getApproverNames(approvalScheme, item, plan, identityName);

 if (approvers != null && approvers.size() == 0 &&

fallbackApprover != null) {

 if (log.isDebugEnabled()) {

 log.debug("Approver could not be resolved. Using fallbackApprover

'"+fallbackApprover+"'.");

 }

 approvers.add(fallbackApprover);

 }

 // If the launcher is an approver remove them from the list

 if (approvers != null && approvers.contains(launcher)) {

 approvers.remove(launcher);

 // If this is the only approver, automatically mark the item approved.

 if (Util.size(approvers) == 0) {

 item.setState(WorkItem.State.Finished);

 item.setOwner(launcher);

 }

 }

 }

}

return approvers;

Policy/Violation Rules

These rules relate to policies and policy violations defined for the installation.

Rules in IdentityIQ Page 120 of 170

Policy

Description

The Policy rules (or constraints) for Advanced policies can be defined through a Policy rule. The rule specifies

the conditions for determining when the policy has been violated.

NOTE: This is actually a special case of an IdentitySelector rule that is provided more arguments (the policy and

constraint) than a normal IdentitySelector rule and can return a full PolicyViolation object, rather than just a

“true” or “false” value. By returning a PolicyViolation, the rule can specify more details about the appearance

and structure of the violation, but this is not strictly required. If the rule returns a PolicyViolation, that violation

will be added for the Identity as returned. If the rule returns a “true” value, a PolicyViolation will be created

using the information available on the policy itself.

Definition and Storage Location

A Policy rule is specified in the UI in an Advanced Policy definition.

Setup -> Policies -> create or edit an Advanced Policy -> Policy Rules section -> Create New Rule ->

Selection Method: Rule

A reference to the rule is recorded in the Policy XML within the GenericConstraint and IdentitySelector

elements.

 <GenericConstraints>

 <GenericConstraint created="1352402035651" id="402846023ac1d3f6013ae17163c30346"

name="Policy Rule" violationOwnerType="None">

 <IdentitySelector>

 <RuleRef>

 <Reference class="sailpoint.object.Rule"

id="402846023a65e596013a65e7a55704ff" name="[Policy Rule Name]"/>

 </RuleRef>

 </IdentitySelector>

 </GenericConstraint>

 </GenericConstraints>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

identity sailpoint.object.Identity Reference to the Identity object being inspected

policy sailpoint.object.Policy Reference to the policy object
constraint sailpoint.object.Constraint Reference to the Constraint object that defines

the policy rule

Outputs:

Argument Type Purpose

violation sailpoint.object.PolicyViolation PolicyViolation object if Identity is in violation of the policy;

Rules in IdentityIQ Page 121 of 170

null if no violation is detected

Example

This example Policy rule defines a policy that Identities should be logging in to every account they own at least

every 180 days. Accounts with no login activity for more than 180 days are in violation of the policy. This rule

returns a complete PolicyViolation object.

import sailpoint.api.SailPointContext;

import sailpoint.object.Attributes;

import sailpoint.object.Custom;

import sailpoint.object.Filter;

import sailpoint.object.Identity;

import sailpoint.object.QueryOptions;

import sailpoint.object.Policy;

import sailpoint.object.PolicyViolation;

import sailpoint.object.Link;

import sailpoint.tools.GeneralException;

import sailpoint.tools.Message;

import java.text.SimpleDateFormat;

import java.text.DateFormat;

import java.util.*;

/**

 * Returns a date <n> days before today.

 */

private Date getDateNDaysAgo(int numDays) {

 Calendar cal = Calendar.getInstance();

 Date returnDate = null;

 cal.add(Calendar.DATE, -(numDays));

 returnDate = cal.getTime();

 return (returnDate);

}

/**

* Checks if the first date is before the second date ignoring time.

**/

public static boolean isBeforeDay(Date date1, Date date2) {

 if (date1 == null || date2 == null) {

 throw new IllegalArgumentException("The dates must not be null");

 }

 Calendar cal1 = Calendar.getInstance();

 cal1.setTime(date1);

 Calendar cal2 = Calendar.getInstance();

 cal2.setTime(date2);

 if (cal1 == null || cal2 == null) {

 throw new IllegalArgumentException("The dates must not be null");

 }

 if (cal1.get(Calendar.ERA) < cal2.get(Calendar.ERA)) return true;

 if (cal1.get(Calendar.ERA) > cal2.get(Calendar.ERA)) return false;

 if (cal1.get(Calendar.YEAR) < cal2.get(Calendar.YEAR)) return true;

 if (cal1.get(Calendar.YEAR) > cal2.get(Calendar.YEAR)) return false;

 return cal1.get(Calendar.DAY_OF_YEAR) < cal2.get(Calendar.DAY_OF_YEAR);

}

Rules in IdentityIQ Page 122 of 170

// Start of main rule logic

PolicyViolation v = null;

Date lastLoginDate = identity.getLastLogin();

if (lastLoginDate == null)

 lastLoginDate = new Date();

Date testDate = getDateNDaysAgo(180);

if (isBeforeDay(lastLoginDate, testDate)) {

 v = new PolicyViolation();

 v.setActive(true);

 v.setIdentity(identity);

 v.setPolicy(policy);

 v.setConstraint(constraint);

 v.setDescription("[Last Login Date [" + lastLoginDate.toString() + "] is more

than 180 days ago.]");

 v.setStatus(sailpoint.object.PolicyViolation.Status.Open);

}

return v;

Violation

Description

A Violation rule specifies the formatting for a policy violation. This generally means that it alters the description

attribute on the PolicyViolation object. This is often used to describe the violation in user-friendly terms. In the

case of Role and Entitlement SOD policies, this can be used to summarize a set of violations detected into a

multi-line string description.

Definition and Storage Location

The Violation rule is specified in the UI as the Policy’s Violation Formatting Rule.

Setup -> Policies -> Create new policy (or select existing policy) -> Violation formatting rule

The rule name is recorded in the Policy’s Attributes map as the violationRule.

<Policy name="Policy Name" … >

 <Attributes>

 <Map>

 <entry key="violationRule" value="[Violation Rule Name]"/>

 </Map>

 </Attributes>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

identity sailpoint.object.Identity Reference to the Identity object to whom the violation
applies

policy sailpoint.object.Policy Reference to the policy object that has been violated

constraint sailpoint.object.Constraint Reference to the constraint, or policy rule, with in the
policy that has been violated

Rules in IdentityIQ Page 123 of 170

violation sailpoint.object.PolicyViolation Reference to the policyViolation object that records the
violation

state java.util.Map A Map that can be used to store and share data between
executions of this rule

Outputs:

Argument Type Purpose

violation sailpoint.object.PolicyViolation Rule returns the altered policyViolation object

NOTE: The rule may either return a violation or alter the violation passed as an argument to the rule. The calling

method overwrites the violation with the returned violation if one is returned; it resumes processing with the

passed-in violation if the rule returns anything other than a PolicyViolation object (including no return value).

Example

This example Violation rule formats the violation description for a policy rule that flags users who have more

than a given number of application accounts and has a high risk score. It creates a user-friendly description of

the violation, stating the number of accounts the user holds and the risk score calculated for the user.

import sailpoint.object.Identity;

import sailpoint.object.Link;

int score = identity.getScore();

int numberOfLinks = identity.getLinks().size();

violation.setDescription("User has accounts on " + numberOfLinks + " resources with a

composite score of " + score + ".");

return violation;

The exampleRules.xml file in the [IdentityIQ Install Directory]/web-inf/config directory includes an additional

example Violation rule called “Render SOD Entitlements” that provides an example of how to format a Role or

Entitlement SOD policy violation into a multi-line string description.

PolicyOwner

Description

The PolicyOwner rule is used to determine the owner of a Policy Violation. Policy violation owners can be set

for the whole policy or for individual rules, or constraints, defined within the policy.

Definition and Storage Location

The PolicyOwner rule is set in the UI through the Policy Definition.

Setup -> Policies -> Policy Violation Owner -> Rule

or

Rules in IdentityIQ Page 124 of 170

Setup -> Policies -> Create or edit Policy Rule -> Policy Violation Owner -> Rule

The reference to the rule is recorded in the Policy XML. This can exist at the policy level or within each defined

constraint, depending on the level at which the owner rule is specified.

<Policy … name="SOD Policy" … violationOwnerType="Rule">

 <ViolationOwnerRule>

 <Reference class="sailpoint.object.Rule" id="402846023a65e596013a65e7a6de0501"

name="[Policy Owner Rule Name]"/>

 </ViolationOwnerRule>

or

 <SODConstraint … name="Accounting SOD-762" violationOwnerType="Rule" … >

 …

 <ViolationOwnerRule>

 <Reference class="sailpoint.object.Rule" id="402846023ac1d3f6013ae178111d034a"

name="[Policy Owner Rule Name]"/>

 </ViolationOwnerRule>

 </SODConstraint>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

identity sailpoint.object.Identity Reference to the identity to whom the violation relates
(the policy violating identity)

policy sailpoint.object.Policy Reference to the policy to which the violation relates

constraint sailpoint.object.BaseConstraint Reference to the policy constraint that the Identity has
violated; only passed when assigning a violation owner
per each specific constraint – this argument is null when
the violation owner is set at the whole policy level

NOTE: The signature for this rule changed in version 6.2p4 and version 6.3 to add the Policy and Constraint

arguments. In previous versions, the rule editor information showed that it receives 3 parameters in addition to

the common arguments: Environment (the task arguments), Policy, and Violation, but that was not correct

information; the rule was previously passed only the violating Identity. Since the new signature includes the

same arguments as the old plus additional ones, this change is backward compatible and old policyOwner rules

will still work in newer versions.

Outputs:

Argument Type Purpose

owner sailpoint.object.Identity The identity to which ownership of the violation (and
therefore responsibility for addressing it) should be assigned

Rules in IdentityIQ Page 125 of 170

Example

This example PolicyOwner rule returns the manager of the policy-violating Identity; if the Identity does not have

a manager, the violation is owned by a hypothetical service account Identity named PolicyReviewer.

import sailpoint.object.Identity;

Identity owner = identity.getManager();

if (null == owner){

 owner = context.getObject(Identity.class, "PolicyReviewer");

}

return owner;

PolicyNotification

Description

The PolicyNotification rule is used to specify additional people who should be notified when a policy violation is

discovered. This is expressed in the policy definition as a PolicyAlert Owner rule, and the rule type

PolicyNotification is never referenced explicitly by IdentityIQ.

Definition and Storage Location

The PolicyNotification rule is an XML-only attribute shown as an attribute of the PolicyAlert component with a

Policy definition. This is an alternative to specifying a username or set of usernames through the UI to notify

when policy violations are created.

<Policy name="SOD Policy" … >

…

 <PolicyAlert … >

 <OwnerRule>

 <Reference class="sailpoint.object.Rule" name="[Policy Notification Rule Name]"/>

 </OwnerRule>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
environment sailpoint.object.Attributes Map of arguments passed to the policy checking process

policy sailpoint.object.Policy Reference to the policy to which the violation relates

violation sailpoint.object.PolicyViolation Reference to the policy violation created based on this
policy analysis

Outputs:

Argument Type Purpose
listener sailpoint.object.Identity

or List<Identity> or
String or List<String> or
Map

Specify the user or users who should be notified of the
violation;
Can be one identity, an identity name, a List of Identities, a
List of identity names, or a Map containing “Identity” with an

Rules in IdentityIQ Page 126 of 170

Identity object or “identityName” with a string identity name

Example

This example PolicyNotification rule returns the manager (identity) of the policy-violating Identity. If the user

has no manager, it returns null and no additional people are notified.

import sailpoint.object.Identity;

Identity listener = null;

Listener = policyViolation.getIdentity.getManager();

return listener;

Login Configuration Rules

There are 4 rules which relate to IdentityIQ login and authentication.

• SSOAuthentication

• SSOValidation

• SAMLCorrelation

• IdentityCreation

Beginning in version 6.3, IdentityIQ supports two different types of single sign-on configurations: rule-based SSO

and SAML SSO. The SSOAuthentication and SSOValidation rules apply to the rule-based SSO, while the

SAMLCorrelation rule applies to SAML SSO. (Prior to version 6.3, only rule-based SSO was supported.)

The IdentityCreation rule only applies to IdentityIQ login/authentication in the case of a failed pass-through

authentication attempt, as described below.

SSOAuthentication

Description

The SSOAuthentication rule specifies how the user is authenticated and matched to an Identity for sign-on to

IdentityIQ. Writing this rule is the only action required to implement rule-based single sign-on with IdentityIQ.

Version 6.1 introduced the option of returning a Link (account) from this rule instead of an Identity; this option

must be used when implementing Electronic Signatures with SSO authentication because this rule is used to

validate the user for recording their electronic signature as well as for initial sign-on.

Definition and Storage Location

The SSOAuthentication rule is connected to the instance through the Login Configuration page.

Gear menu -> Global Settings -> Login Configuration-> SSO Configuration -> check Enable Rule Based

Single Sign-On (SSO) -> Single Sign-On Rule

The name of this rule gets stored in the attributes map of the System Configuration XML.

<entry key="loginSSORule" value="[SSOAuthentication Rule]"/>

Rules in IdentityIQ Page 127 of 170

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
httpRequest string Contains header information, including the user’s token

from the SSO system

Outputs:

Argument Type Purpose

identity or
link

sailpoint.object.Identity or
sailpoint.object.Link

Specifies the Identity or the Link matched to the
information passed in the header

Example

This example SSOAuthentication rule validates the HTTP header and then extracts the username from it to

correlate to an Identity.

import sailpoint.object.Application;

import sailpoint.object.Identity;

import sailpoint.object.Link;

import sailpoint.tools.GeneralException;

import sailpoint.api.Correlator;

import sailpoint.api.SailPointContext;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpSession;

private String COOKIE = "cookie";

private String TRANSACTION_ID = "smtransactionid";

private String SERVER_SESSION = "smserversessionid";

private String AUTHDIR_OID = "smauthdiroid";

private String AUTHDIR_SERVER = "smauthdirserver";

private String AUTHDIR_NAME = "smauthdirname";

private String USER_DN = "smuserdn";

private String USERNAME = “smuser”;

private String[] HEADER_ATTRS = { TRANSACTION_ID, SERVER_SESSION, AUTHDIR_SERVER,

AUTHDIR_NAME, USER_DN, USERNAME, COOKIE };

/**

* Make sure we have the values we know about. May vary by

* version of SiteMinder.

*/

private void validateHeader() {

 for (String header : HEADER_ATTRS) {

String value = httpRequest.getHeader(header);

if (value == null) {

throw new GeneralException("Invalid Site-Minder session." + " Missing variable [" +

header + "]");

}

 }

}

Rules in IdentityIQ Page 128 of 170

// Rule processing starts here

validateHeader();

String username = httpRequest.getHeader(USERNAME);

Identity user = new Identity();

// Ask the correlator to find us the Link associated with the

// username we stripped from the header

Correlator correlator = new Correlator(context);

if (username != null) {

 user = correlator.findIdentityByAttribute("uid", username);

 if (user == null) {

 throw new GeneralException("Unable to find Link associated: " +

username);

 }

}

return user;

SSOValidation

Description

The SSO Validation rule, if defined, runs on every page change as a user navigates through IdentityIQ; it validates

the session with the SSO provider by examining the headers through the httpRequest. This frequent validation

provides an added measure of verification for those clients with extraordinary concerns for security, but it can

impact system performance. If the SSO Validation Rule cannot verify a valid SSO session it logouts the user and

displays an error message (as specified by the rule creator).

This rule was added in IdentityIQ version 6.0 to support a specific customer request and is not likely to be used

in most installations.

Definition and Storage Location

The SSO Validation rule is connected to the instance through the Login Configuration page.

Gear menu -> Global Settings -> Login Configuration-> SSO Configuration -> check Enable Rule Based

Single Sign-On (SSO) -> Single Sign-On Rule

The name of this rule gets stored in the attributes map of the System Configuration XML.

<entry key="loginSSOValidationRule" value="[SSOValidation Rule]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
httpRequest string Contains header information, including the user’s token

from the SSO system

Rules in IdentityIQ Page 129 of 170

Outputs:

Argument Type Purpose

resultMessage string Returns the error message to display, indicating that the
validation failed; returns null if validation was successful

Example

This example SSO Validation rule validates the HTTP header to ensure it contains the expected elements.

import sailpoint.tools.GeneralException;

private String COOKIE_TOKEN = "CTINTERNAL";

private String COOKIE = "cookie";

private String REQUEST_ID = "ct_request_id";

private String SERVER_SESSION_TIME = "ct-session-init-time";

private String USER_DN = "ct-remote-user";

private String[] HEADER_ATTRS = { REQUEST_ID, SERVER_SESSION_TIME, USER_DN, COOKIE };

// Iterate through the header attributes

for (String header : HEADER_ATTRS) {

 String value = httpRequest.getHeader(header);

 // Check that none of these header values is null

 if (value == null)

 return ("Invalid Clear Trust session."+" Missing variable [" +header+"]");

 // Check that the “cookie” attribute contains required value

 if (header.contentEquals(COOKIE)){

 if (!value.contains(COOKIE_TOKEN))

 return ("Invalid Clear Trust session."+ " Missing CT Session cookie ["

+header+"]");

 }

}

SAMLCorrelation

The SAMLCorrelation rule provides the logic for mapping the assertion details provided by the identity provider

to an Identity for sign-on to IdentityIQ. SAML SSO was introduced in version 6.3 of IdentityIQ, so this rule

applies to 6.3+ versions.

Definition and Storage Location

The SAMLCorrelation rule is connected to the instance through the Login Configuration page.

Gear menu -> Global Settings -> Login Configuration-> SSO Configuration -> check Enable SAML Based

Single Sign-On (SSO) -> SAML Correlation Rule

The name of this rule gets stored in the Configuration object called SAML, as a rule reference within the

SAMLConfig element.

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

Rules in IdentityIQ Page 130 of 170

assertionAttributes HashMap A map of (string) key-value pairs provided by the Identity
Provider; will always contain a key NameId (value is the
name Id sent by the Identity Provider) and any other
SAML assertion attributes

Outputs:

Argument Type Purpose

identity or
link

sailpoint.object.Identity or
sailpoint.object.Link

Specifies the Identity or the Link matched to the
information passed in the assertionAttributes

NOTE: As with the SSOAuthentication rule, the rule must return a Link (account) instead of an Identity when

implementing Electronic Signatures with SSO authentication because this rule is used to validate the user for

recording their electronic signature as well as for initial sign-on.

Example

This example SAMLCorrelation rule takes the nameId attribute provided by the Identity Provider and looks up

the identity which has that name in IdentityIQ. (This, of course, assumes that the identity name matches the

value provided by the Identity Provider.)

import sailpoint.object.Identity;

// Get the nameId from the assertionAttributes

String nameId = (String)assertionAttributes.get("nameId");

Identity ident;

if(nameId != null) {

 // Lookup the identity based on nameId

 ident = context.getObject(Identity.class, nameId);

}

return ident;

IdentityCreation

Description

An IdentityCreation rule (also used in aggregation/refresh) can be specified as an Auto-Create User Rule in the

IdentityIQ Login Configuration to automatically create an Identity following a failed attempt at pass-through

authentication. When no Identity matching the entered username credential was found on the pass-through

application, IdentityIQ creates an Identity for the user, and this rule can customize attributes for the Identity.

Definition and Storage Location

An Auto-Create User Rule is specified in the login configuration:

Gear menu -> Global Settings -> Login Configuration -> Login Settings -> Auto-Create User Rule

Rules in IdentityIQ Page 131 of 170

The Auto-Create User Rule is recorded in the RuleRegistry XML as a RuleCallout. The rule in its entirety is copied

into the RuleRegistry as the value for this callout.

<RuleRegistry created="1350329289215" id="402846023a65e596013a65e5c9ff00eb" name="Rule

Registry">

 <Registry>

 <Map>

 <entry>

 <key>

 <RuleCallout>AUTO_CREATE_USER_AUTHENTICATION</RuleCallout>

 </key>

 <value>

 <!-- Whole rule is copied here automatically -->

 </value>

 </entry>

 </Map>

 </Registry>

Arguments and Example

See the IdentityCreation rule under Aggregation/Refresh Rules for the argument list for this rule type and an

example rule.

Logical Application Rules

CompositeAccount

Description

The CompositeAccount Rule is used to generate logical application account links. This is an alternative to

specifying a correlation strategy on the logical application’s tiers. If the rule exists, it will be used in place of the

tier definition correlation; if it does not exist, the Identity’s logical application accounts are determined by

matching the Identity to the tiers using the IdentitySelector object defined on the Tier. Given an Identity, the

rule determines if the Identity should have an account on the logical application, and if so, creates and returns a

Link object or list of Links.

Definition and Storage Location

A CompositeAccount Rule can be created and associated to a Logical application in the application definition.

Applications -> Application Definition -> Create new or edit existing application of Application Type:

Logical -> Tiers -> Account Rule

The rule name is recorded in the logical application’s attributes map as the “accountRule” within a

CompositeDefinition element.

<Application connector="sailpoint.connector.DefaultLogicalConnector" name="My Logical

App" type="Logical" … >

<Attributes>

 <Map>

 <entry key="compositeDefinition">

Rules in IdentityIQ Page 132 of 170

 <value>

 <CompositeDefinition accountRule="[CompositeAccount Rule Name]" … >

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
identity sailpoint.object.Identity Reference to the Identity to evaluate and

determine whether or not it should have an
account (link) on the logical application

application sailpoint.object.Application Reference to the application object representing
the logical application

Outputs:

Argument Type Purpose

links sailpoint.object.Link or
List <sailpoint.object.Link>

Rule returns a single Link object or a list of one or
more Links objects that will be connected to the
Identity

Example

This example CompositeAccount rule determines that an Identity should have an account on the logical

application if that Identity has accounts with the same nativeIdentity value on all of the tier applications defined

in the logical application definition. A link is returned for each nativeIdentity value held by the Identity on all of

the tier application (e.g. if the Identity has a JohnSmith and a JohnSmithAdmin account on all tier applications,

the list returned from the rule will contain Links for the logical application for each of those nativeIdentity

values).

import sailpoint.object.Application;

import sailpoint.object.Identity;

import sailpoint.object.Link;

import java.util.ArrayList;

import sailpoint.object.CompositeDefinition;

List composites = null;

// Get the tiers, the names are passed through the Application.

CompositeDefinition def = application.getCompositeDefinition();

if (def != null){

 List tiers = def.getTiers();

 if (tiers == null || tiers.size() < 2) {

 log.error("Must have two or more application names specified.");

 return null;

 }

 // Get Identity’s current links for all tiers.

 List apps = new ArrayList(tiers.size());

 Map linksByApp = new HashMap(tiers.size());

 String primaryTierApp = def.getPrimaryTier() != null ? def.getPrimaryTier() : "";

Rules in IdentityIQ Page 133 of 170

 Application primaryTier = null;

 for (Iterator it=tiers.iterator(); it.hasNext();) {

 String appName = ((CompositeDefinition.Tier) it.next()).getApplication();

 Application app = context.getObject(Application.class, appName);

 if (primaryTierApp.equals(appName)){

 primaryTier = app;

 }

 if (null != app) {

 List links = identity.getLinks(app);

 if ((null != links) && !links.isEmpty()) {

 apps.add(app);

 linksByApp.put(app, links);

 }

 }

 }

 if (tiers.size() == linksByApp.size()) {

 List topTierLinks = (List) linksByApp.get(primaryTier);

 for (int i = 0; i < topTierLinks.size(); i++) {

 Link link1 = (Link) topTierLinks.get(i);

 String id = link1.getNativeIdentity();

 List componentLinks = new ArrayList();

 // Other tiers must have a link with the same name. We're starting

 // at index 1 because we're already looking at the top tier app.

 for (int j = 1 ; j < apps.size() ; j++) {

 Application app = (Application) apps.get(j);

 List linksForTier = (List) linksByApp.get(app);

 boolean foundMatchInTier = false;

 for (Iterator it=linksForTier.iterator(); it.hasNext();) {

 Link link2 = (Link) it.next();

 if (id.equalsIgnoreCase(link2.getNativeIdentity())) {

 foundMatchInTier = true;

 componentLinks.add(link2);

 break;

 }

 }

 // If we didn't find a match, quit looking.

 if (!foundMatchInTier) {

 break;

 }

 Link composite = null;

 // If we have components in all tiers, we found a composite account.

 if (componentLinks != null && apps != null && componentLinks.size() ==

apps.size() - 1) {

 composite = new Link();

 composite.setApplication(application);

 composite.setNativeIdentity(id);

 composite.addComponent(link1);

 for (Iterator it = componentLinks.iterator(); it.hasNext();) {

 Link theLink = (Link) it.next();

Rules in IdentityIQ Page 134 of 170

 if (theLink != null){

 if (theLink.getAttributes() != null){

 groupmbr = theLink.getAttributes().get("groupmbr");

 if (null != groupmbr) {

 composite.setAttribute("groupmbr", groupmbr);

 }

 directPermissions =

theLink.getAttributes().get("directPermissions");

 if (null != directPermissions) {

 composite.setAttribute("directPermissions",

directPermissions);

 }

 }

 composite.addComponent(theLink);

 }

 }

 }

 // outer loop: continue processing top tier accounts in case

 // we have more than one stack

 if (composite != null) {

 if (composites == null)

 composites = new ArrayList();

 composites.add(composite);

 }

 }

 }

 }

}

return composites;

CompositeRemediation

Description

The CompositeRemediation rule is called when provisioning needs to be performed against logical accounts. It is

passed the provisioning plan built by the plan compiler and alters that plan so the request is directed at the

component applications, rather than the logical application. The rule is meant to build a separate modified

provisioning plan and return that plan. If the rule returns null, IdentityIQ uses the plan passed to the rule in

subsequent processing, so the rule author can choose to have the rule directly modify the plan passed to it

instead.

Definition and Storage Location

The CompositeRemediation rule is specified in the application definition for a logical application.

Applications -> Application Definition -> Create new or edit existing application of Application Type:

Logical -> Tiers -> Provisioning Rule

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

identity sailpoint.object.Identity Reference to the Identity object for whom
the provisioning request has been made

Rules in IdentityIQ Page 135 of 170

plan sailpoint.object.ProvisioningPlan Reference to a provisioning plan against the
logical application

application sailpoint.object.Application Reference to the (logical) application object
on which the rule is defined

Outputs:

Argument Type Purpose

provisionPlan sailpoint.object.ProvisioningPlan converted provisioning plan that targets the
applications that make up the logical
application.

Example

This example CompositeRemediation rule makes modifications to the AccountRequest in the plan that relates to

the logical application FinanceApp. AccountRequests for FinanceApp will be sent to the CorpDirectory tier

application. The group attribute on CorpDirectory is “group” instead of “groupMember” (as is reflected in the

FinanceApp schema), so AttributeRequests referring to the attribute name “groupMember” must be changed to

refer to “group”. Any non-FinanceApp-related requests that exist in the plan are kept intact and copied into a

new provisioning plan exactly as they came in from the original plan, along with the converted requests for

FinanceApp/CorpDirectory.

import sailpoint.tools.GeneralException;

import sailpoint.tools.Util;

import sailpoint.object.Identity;

import sailpoint.object.ProvisioningPlan;

import sailpoint.object.ProvisioningPlan.AccountRequest;

import sailpoint.object.ProvisioningPlan.AttributeRequest;

ProvisioningPlan updatedPlan = null;

if (plan != null) {

 // Get the account request for the composite application from the plan by app name

 AccountRequest compositeRequest = plan.getAccountRequest("FinanceApp");

 if (compositeRequest != null) {

 List convertedAttributeRequests = new ArrayList();

 // Convert the attribute requests that reference groupMember to just groups

 List attributeRequests = compositeRequest.getAttributeRequests();

 if (Util.size(attributeRequests) > 0) {

 for (AttributeRequest request : attributeRequests) {

 String attributeName = request.getName();

 if ("groupMember".compareTo(attributeName) == 0) {

 AttributeRequest req = new AttributeRequest(request);

 req.setName("groups");

 convertedAttributeRequests.add(req);

 } else {

 convertedAttributeRequests.add(new AttributeRequest(req));

 }

 }

 }

 List updatedAccountRequests = new ArrayList();

 // add in any other request that are part of the plan if any

 List accountRequests = plan.getAccountRequests();

Rules in IdentityIQ Page 136 of 170

 if (Util.size(accountRequests) > 0) {

 for (AccountRequest accountRequest : accountRequests) {

 String appName = accountRequest.getApplication();

 if ("FinanceApp".compareTo(appName) != 0) {

 updatedAccountRequests.add(accountRequest);

 }

 }

 }

 // Convert the "FinanceApp" request to "CorpDirectory"

 // and add it to the updated account requests

 AccountRequest convertedRequest = new AccountRequest(compositeRequest);

 convertedRequest.setApplication("CorporateDirectory");

 convertedRequest.setAttributeRequests(convertedAttributeRequests);

 updatedAccountRequests.add(convertedRequest);

 // create new plan and add the list of account requests to it

 updatedPlan = new ProvisioningPlan(plan);

 updatedPlan.setAccountRequests(updatedAccountRequests);

 }

}

return updatedPlan;

CompositeTierCorrelation

Description

The CompositeTierCorrelation rule correlates tier accounts to the primary application account for a given

Identity. This rule is only specified when simple attribute matching is insufficient to identify the correct tier

account (e.g. when an Identity has multiple accounts on a tier application and only a subset of them should be

correlated to the tier as part of the logical application.

Definition and Storage Location

The CompositeTierCorrelation rule must be specified in the Application XML as an attribute on the Tier. There is

no UI option for specifying this rule.

<Application connector="sailpoint.connector.DefaultLogicalConnector" … name="MyApp"

type="Logical">

 <Attributes>

 <Map>

 <entry key="compositeDefinition">

 <value>

 <CompositeDefinition … >

 <Tiers>

<Tier application="TierAppName" correlationRule=”[CompositeTierCorrelation Rule]/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
identity sailpoint.object.Identity Reference to the Identity object for which

the tier correlation is being done

tierApplication sailpoint.object.Application Reference to the application object
represented by the tier being correlated

primaryLink sailpoint.object.Link Reference to the link object (account) held

Rules in IdentityIQ Page 137 of 170

by the Identity on the primary application

Outputs:

Argument Type Purpose

links sailpoint.object.Link
or list of links

One or more links on the tier application that correlate to
the tier

Example

This CompositeTierCorrelation rule retrieves all of the Identity’s links associated with the tierApplication and

examines attributes on them to determine which should be the correlated links.

Filter f = Filter.and(Filter.eq("application", tierApplication),

 Filter.eq("identity", identity));

QueryOptions qo = new QueryOptions();

qo.addFilter(f);

List appLinks = Context.getObjects(Link.class,qo);

List corrLinks = new ArrayList();

if (null != appLinks) {

 for (Link appLink : appLinks) {

 // Only add active accounts to the correlation link list

 String inactiveAttr = (String) appLink.getAttribute("inactive");

 if (inactiveAttr.equals("false")) {

 corrLinks.add(appLink);

 }

 }

}

return corrLinks;

Unstructured Targets Rules

A few application types (e.g. Active Directory, SharePoint) have the capacity to track access that is not readily

discoverable in a centralized location but must be gathered by traversing directory trees or sites. These

permissions are gathered using unstructured configs that define how to access their data. These rules are used

to manipulate the collected data in various ways.

TargetCreation

Description

This rule is called when a Target is created, allowing manipulation of the target before it is saved. It is most

commonly used to filter out unwanted targets before they are created (e.g. objects that have only “system

access” and therefore will not correlate to anything or targets that do not need to be tracked because they are

unrestricted).

Definition and Storage Location

The TargetCreation rule is connected to the application in the UI through the application definition.

Rules in IdentityIQ Page 138 of 170

Applications -> Application Definition -> Edit or Create new application of Application Type: Active

Directory, Active Directory Full, Microsoft SharePoint, or Microsoft SharePoint Online -> Unstructured

Targets -> New Unstructured Data Source (or click existing) -> Create Target Source (or select existing) -

> Creation Rule

In IdentityIQ 7.1, the SecurityIQ application type defines unstructured targets as a schema, so the

TargetCreation rule for that application is specified here:

Applications -> Application Definition -> Edit or Create new application of Application Type: SecurityIQ ->

Rules -> Schema Rules: unstructured -> Creation Rule

The reference to the rule is recorded in the TargetSource XML, which is in turn referenced by the Application

object.

<TargetSource collector="sailpoint.unstructured.SharePointRWTargetCollector" …>

 <CreationRule>

 <Reference class="sailpoint.object.Rule" id="402846023a65e596013a65e789c004ff"

name="[TargetCreation Rule Name]"/>

 </CreationRule>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.Application Reference to the Application object that owns
the Target

target sailpoint.object.Target Reference to the Target object being created

targetSource sailpoint.object.TargetSource Source of the configuration for the collector

Outputs:

Argument Type Purpose

target sailpoint.object.Target The Target object as modified by the rule

NOTE: The rule can modify the target that is passed in as a parameter. If the rule returns a Target object, that

object will replace the target passed to the rule. If the rule returns anything else (including no return value), the

target passed to the rule is used in subsequent processing. As a result, if the target was modified directly by the

rule, those modifications are applied even if the rule does not explicitly return it.

Example

This example TargetCreation rule prevents an unwanted target from being created. It examines the target’s

Name attribute for the value “C:\tmp\” and returns a null Target when that is found; returning a null Target

object causes it to be filtered and therefore not created.

import sailpoint.object.Target;

Rules in IdentityIQ Page 139 of 170

import sailpoint.tools.Util.

String targetName = target.getName();

if (Util.compareTo(targetName, "C:\tmp\") == 0) {

 Target nullTarget = new Target();

 return nullTarget;

}

TargetCorrelation

Description

This rule determines how the permission data gathered through unstructured configs is correlated to a link or

group in IdentityIQ. The correlation is done by IdentityIQ based on the attribute name and value returned from

this rule.

Definition and Storage Location

The TargetCorrelation rule is connected to the application in the UI through the application definition.

Applications -> Application Definition -> Edit or Create new application of Application Type: Active

Directory, Active Directory Full, Microsoft SharePoint, or Microsoft SharePoint Online -> Unstructured

Targets -> New Unstructured Data Source (or click existing) -> Create Target Source (or select existing) ->

Correlation Rule

In IdentityIQ 7.1, the SecurityIQ application type defines unstructured targets as a schema, so the

TargetCreation rule for that application is specified here:

Applications -> Application Definition -> Edit or Create new application of Application Type: SecurityIQ ->

Rules -> Schema Rules: unstructured -> Correlation Rule

The reference to the rule is recorded in the TargetSource XML, which is in turn referenced by the Application

XML.

<TargetSource collector="sailpoint.unstructured.SharePointRWTargetCollector" …>

 <CorrelationRule>

 <Reference class="sailpoint.object.Rule" id="402846023a65e596013a65e789c004db"

name="[TargetCorrelation Rule Name]"/>

 </CorrelationRule>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.Application Reference to the application object on which
the targets exist

nativeId String The group or user’s native identity on the
target

target sailpoint.object.Target Reference to the collected target

targetSource sailpoint.object.TargetSour Reference to the config that drives the

Rules in IdentityIQ Page 140 of 170

ce collection process
isGroup boolean Flag indicating whether the target represent a

group (as opposed to a user account)

Outputs:

Argument Type Purpose

result java.util.Map Map containing the appropriate group or link attribute
name and value to correlate the discovered permission to
an entity:
If permission belongs to a group:
 “groupAttributeName”,”[attribute name]”
 “groupAttributeValue”,”[value that identifies the group]”
or
 “group”,”[ManagedAttribute object for the group]”

If permission belongs an account:
 “linkIdentity”,”[GUID for the correlated Link]”
or
 “linkDisplayName”,”[display name attribute value for the
Link]”
or
 “linkAttributeName”,”[attribute name]”
 “linkAttributeValue”,”[value that identifies the account]”

NOTE: If Link is on an application that includes Instances, a
“linkInstance” attribute should be included in the map to
specify the application instance to match to as well.

Example

This TargetCorrelation rule identifies “objectSid” as the correlation attribute and the nativeId value from the

target as the correlation value.

import sailpoint.api.Correlator;

import sailpoint.tools.xml.XMLObjectFactory;

private String ATTR_OBJECT_SID = "objectSid";

Map returnMap = new HashMap();

if (isGroup) {

 returnMap.put(Correlator.RULE_RETURN_GROUP_ATTRIBUTE,ATTR_OBJECT_SID);

 returnMap.put(Correlator.RULE_RETURN_GROUP_ATTRIBUTE_VALUE,

 nativeId);

} else {

 returnMap.put(Correlator.RULE_RETURN_LINK_ATTRIBUTE, ATTR_OBJECT_SID);

 returnMap.put(Correlator.RULE_RETURN_LINK_ATTRIBUTE_VALUE, nativeId);

}

return returnMap;

Rules in IdentityIQ Page 141 of 170

TargetRefresh

Description

This rule allows the installation to manipulate attributes of an Unstructured Target during a Target Aggregation

task if that target has previously been created. The TargetCreation rule is run when new targets are being

created while this one runs for existing targets. This rule type was introduced in version 7.1.

Definition and Storage Location

The TargetRefresh rule is connected to the application in the UI through the application definition.

Applications -> Application Definition -> Edit or Create new application of Application Type: Active

Directory, Active Directory Full, Microsoft SharePoint, or Microsoft SharePoint Online -> Unstructured

Targets -> Add New Unstructured Data Source (or click existing) -> Create Target Source (or select

existing) -> Refresh Rule

In IdentityIQ 7.1, the SecurityIQ application type defines unstructured targets as a schema, so the

TargetCreation rule for that application is specified here:

Applications -> Application Definition -> Edit or Create new application of Application Type: SecurityIQ ->

Rules -> Schema Rules: unstructured -> Refresh Rule

The reference to the rule is recorded in the TargetSource XML, which is in turn referenced by the Application

XML.

<TargetSource collector="sailpoint.unstructured.SharePointRWTargetCollector" …>

 <RefreshRule>

 <Reference class="sailpoint.object.Rule" name="TargetRefresh Rule Name"/>

 </RefreshRule>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.Application Reference to the application object on which
the targets exist

target sailpoint.object.Target Reference to the collected target

targetSource sailpoint.object.TargetSour
ce

Reference to the config that drives the
collection process

Outputs:

Argument Type Purpose
target Sailpoint.object.Target The Target object as modified by the rule

Rules in IdentityIQ Page 142 of 170

Example

This example TargetRefresh rule set the displayName of the target to match the filename, rather than the full

path of the resource.

import sailpoint.object.Target;

import sailpoint.tools.Util.

String targetName = target.getName();

int index = targetName.lastIndexOf("\\");

String fileName = targetName.substring(index + 1);

target.setDisplayName(fileName);

return target;

TargetTransformer

Description

This rule is a seldom-used rule for manipulating a target object during target collection. It is similar to a Build

Map rule for a connector schema, but applies specifically to target collection/manipulation and is only available

in the WindowsTargetCollector and the original (pre-7.2) SecurityIQTargetCollector.

Definition and Storage Location

The TargetTransformer rule is not available in the IdentityIQ UI. The reference to the rule is recorded in the

TargetSource XML, which is in turn referenced by the Application XML.

<TargetSource collector="sailpoint.unstructured.WindowsTargetCollector" …>

 <TransformationRule>

 <Reference class="sailpoint.object.Rule" name="Windows Transform Rule"/>

 </TransformationRule>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

collector sailpoint.unstructured.Windows
TargetCollector or
SecurityIQTargetCollector

Reference to the target collector from which
the targets are being read

target sailpoint.object.Target Reference to the collected target

targetSource sailpoint.object.TargetSource Reference to the config that drives the
collection process

Outputs:

Argument Type Purpose

target Sailpoint.object.Target The Target object as modified by the rule

Rules in IdentityIQ Page 143 of 170

Alert Processing Rules

IdentityIQ version 7.1p1 introduced alert processing functionality. This was added to allow IdentityIQ to trigger

processes based on alerts aggregated from SailPoint’s unstructured data management solution, SecurityIQ,

though it could also be used for handling alerts from other sources. IdentityIQ 7.2 made some improvements to

this alert processing functionality, including definition of some new rule types around alert creation/correlation.

Applications which define an Alert schema (which includes only SecurityIQ, out of the box) will support creation

and execution of an AlertCreation and AlertCorrelation rule.

NOTE: Alert aggregation can also execute a customization rule, just like any other aggregation process for any

other schema type. The usage of a customization rule in alert aggregation is generally redundant with the

AlertCreation rule because existing alerts are never updated in place (unlike accounts and groups) - meaning

that the Creation rule will run for every alert processed and can do any customization required. Consequently, it

is unlikely that most customers will use that rule type in this specialized aggregation process. Refer to the

ResourceObjectCustomization content for more information if you want to use this rule type in alert processing.

AlertCreation

The AlertCreation rule runs during alert aggregation, as the alert record is being created in IdentityIQ. It is

primarily used for populating attributes of the Alert record that are not auto-populated by the connector.

Common examples include the Display Name or Alert Date attributes which will be included in the summary

data shown on the Alerts list in the UI if populated.

NOTE: If the AlertCreation rule returns null, this will cause the alert aggregation process to skip the alert (i.e. not

create it in IdentityIQ).

Definition and Storage Location

An AlertCreation rule is associated to the application which contains the Alert schema (e.g. SecurityIQ) through

the Rules tab and can be defined through the rule editor UI.

Applications -> Application Definition -> choose/create application with alert schema (e.g. SecurityIQ) ->

Rules -> Schema Rules: alert -> Creation Rule

In the Application XML, the rule reference is stored within the alert schema:

<Application connector="sailpoint.connector.SecurityIQConnector" name="SecurityIQ"

profileClass="" type="SecurityIQ">

…

<Schemas>

 <Schema … objectType="alert">

 …

 <CreationRule>

 <Reference class="sailpoint.object.Rule" name="Alert Creation"/>

 </CreationRule>

 </Schema>

…

Rules in IdentityIQ Page 144 of 170

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.
Application

The application object from which the alert was aggregated

alert sailpoint.object.
Alert

The alert object to be evaluated against the rule’s conditions to
determine if the alertDefinition’s response should be executed or not

Outputs:

Argument Type Purpose

alert sailpoint.object.Alert The alert object being created (with any updates made by
the rule)

Example

This example AlertCreation rule populates the alert's displayName attribute from other data that is included in

the alert. Specifically, this rule sets the displayname to username: action.

import sailpoint.object.Alert;

String user = alert.getAttribute("userFullName");

String action = alert.getAttribute("actionType");

alert.setDisplayName(user + ":" + action);

return alert;

AlertCorrelation

The AlertCorrelation rule allows the alert to be associated to some other object in IdentityIQ. IdentityIQ allows

an alert to be correlated to any object, though this correlation typically maps to the identity who owns the

account which performed the action that generated the alert or to the account (Link) itself. The correlation

records the object name and ID on the alert, rather than attaching the alert to the object. This correlation is

used in the alert response – the object is provided to the email, workflow, or certification event that is triggered

for the alert by an AlertDefinition. The AlertCorrelation rule runs just before the AlertCreation rule.

Definition and Storage Location

An AlertCorrelation rule is associated to the application which contains the Alert schema through the Rules tab

and can be defined through the rule editor UI.

Applications -> Application Definition -> choose/create application with alert schema (e.g. SecurityIQ) ->

Rules -> Schema Rules: alert -> Correlation Rule

In the Application XML, the rule reference is stored within the alert schema:

<Application connector="sailpoint.connector.SecurityIQConnector" name="SecurityIQ"

profileClass="" type="SecurityIQ">

Rules in IdentityIQ Page 145 of 170

…

<Schemas>

 <Schema … objectType="alert">

 …

 <CorrelationRule>

 <Reference class="sailpoint.object.Rule" name="Alert Correlation"/>

 </CorrelationRule>

</Schema>

…

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

source sailpoint.object.
Application

The application object from which the alert was aggregated

alert sailpoint.object.
Alert

The alert object to be evaluated against the rule’s conditions to
determine if the alertDefinition’s response should be executed or not

Outputs:

Argument Type Purpose

object sailpoint.object.SailPointObject Returns the object which should be correlated to the alert

Example

This example AlertCorrelation rule identifies the AD account which contains the matching account name

(specified in a Link attribute called siqAccountName) and returns the identity which owns that account, thereby

correlating the alert to that identity.

import sailpoint.object.Alert;

import sailpoint.object.Link;

import sailpoint.object.QueryOptions;

import sailpoint.object.Filter;

String username = alert.getAttribute("userFullName");

QueryOptions qo = new QueryOptions();

qo.addFilter(Filter.eq("siqAccountName",username));

List accts = context.getObjects(Link.class, qo);

if (null != accts) {

 if (accts.size() > 1) {

 log.warn("too many matched accounts: " + accts.size());

 return null;

 }

 for (Link ADAcct : accts) {

 return ADAcct.getIdentity();

 }

}

Rules in IdentityIQ Page 146 of 170

AlertMatch

An AlertDefinition specifies the desired response in IdentityIQ for a certain set of alerts read from an alert

source system (like SecurityIQ), and it includes logic for identifying which alerts should trigger the defined

response. An AlertMatch rule is one way to define that identifying logic (a set of Match Terms is the other).

Definition and Storage Location

An AlertMatch rule can be associated to an AlertDefinition on the Alert Definition page. There is no rule editor

available on this page, however, so the rule must be written in XML and imported into IdentityIQ.

Setup -> Alerts -> Alert Definitions -> create/edit Alert Definition -> Selector -> Match Rule

In the AlertDefinition XML, this is stored within the AlertMatchConfig:

<AlertDefinition name="Financials Run Cert">

…

 <AlertMatchConfig>

 <MatchRule>

 <Reference class="sailpoint.object.Rule" name="financial alert match"/>

 </MatchRule>

 </AlertMatchConfig>

…

</AlertDefinition>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

alert sailpoint.object.Alert The alert object to be evaluated against the rule’s conditions
to determine if the alertDefinition’s response should be
executed or not

Outputs:

Argument Type Purpose

status Boolean Returns true if the alert should execute the alertDefinition’s
response (i.e. it meets the identifying criteria for the specified
response)

Example

This example AlertMatch rule examines the alertRuleNames attribute of the Alert object to determine if the

alert was created in response to the Alert on Financials rule. If it was, it should trigger this alert response in

IdentityIQ (return true); if not, it should not.

List alertRuleNames = alert.getAttribute("alertRuleNames");

if (null != alertRuleNames) {

Rules in IdentityIQ Page 147 of 170

 for (String alertRule : alertRuleNames) {

 if ("Alert on Financials".equals(alertRule))

 {

 return true;

 }

 }

}

 else

 log.warn("no rule names retrieved");

return false;

Activity Data Source Rules

These rules relate to the processing of activity data for various applications. The first two --ActivityCorrelation

and ActivityTransformer -- manage activity manipulation for all systems on which activity data can be collected.

The last two -- ActivityConditionBuilder and ActivityPositionBuilder --relate only to JDBC activity data sources.

ActivityTransformer

Description

The ActivityTransformer rule manipulates the activity data read from the activity data source to transform it into

the ApplicationActivity format that is required for IdentityIQ to record it. The activity data is passed to this rule

in different ways, depending on the activity data source and activity collector used.

Definition and Storage Location

The ActivityTransformer rule is connected to the application in the UI through the application definition.

Applications -> Application Definition -> Edit or Create new application -> Activity Data Sources -> New

Activity Data Source (or click existing) -> Transformation Rule

The reference to the rule is recorded in the ActivityDataSource XML, which is in turn referenced by the

Application XML (in its <ActivityDataSources> element).

<TransformationRule>

 <Reference class="sailpoint.object.Rule" id="ff8080813b712ea0013b71c4d873004f"

name="testActivityTransform"/>

</TransformationRule>

Arguments

Inputs (in addition to the common arguments): Variable based on the collector type

The JDBC Collector passes in a nested hashmap structure called rowColumns and an ApplicationActivity object

called activity.

Argument Type Purpose

rowColumns java.util.HashMap A hashmap of column names and values
activity sailpoint.object.ApplicationActivity Reference to an ApplicationActivity object that has been

Rules in IdentityIQ Page 148 of 170

partially completed from key values in the record

The LogFile Collector passes in each attribute as a separate name, value pair. The names of the arguments are

completely dependent on the column names in the log file; all are added as strings. It also passes an

ApplicationActivity object to the rule. An example argument list could look like this:

Example
Argument

Type Purpose

username String Name of the user performing the activity

actionDate string Date the activity occurred
… Other fields here

activity sailpoint.object.App
licationActivity

Reference to an ApplicationActivity object that has been
partially completed from key values in the log file record

The Windows Event Log Collector passes these arguments to the rule:

Argument Type Purpose

datasource Sailpoint.object.ActivityD
ataSource

A reference to the ActivityDataSource object that defines
the source from which the application’s activity data is
read

event sailpoint.object.Windows
EventLogEntry

A reference to the WindowsEventLogEntry object that
represents an entry in the Windows Event Log

The RACF Activity Collector does not use this rule.

NOTE: Because of the variable nature of the arguments to this rule type, these are good candidates for using the

procedures outlined in Printing the Beanshell Namespace to understand all of the available parameters in each

rule.

Outputs:

Argument Type Purpose

activity ApplicationActivity The ApplicationActivity object that represents the activity

Example

This example activityTransformer rule reads the individual parameters passed to the rule and builds them into

an ApplicationActivity object. This example relates to a Log File Collector that has sent this set of arguments:

Argument Description

ActionDateTime Date/Time the activity occurred

SystemName The computer on which the activity occurred
UserID The username of the account performing the action

Status Completion status of the action

activity Reference to an ApplicationActivity object that has been partially completed
from key values in the log file record

Rules in IdentityIQ Page 149 of 170

import sailpoint.object.ApplicationActivity.Action;

import sailpoint.object.ApplicationActivity.Result;

activity.setTimeStamp(ActionDateTime);

activity.setTarget(SystemName);

activity.setAction(Action.Create);

activity.setUser(SystemName + "\\" + UserID);

if ("Complete".equals(Status)) {

 activity.setResult(Result.Success);

} else if ("Error".equals(Status)) {

 activity.setResult(Result.Failure);

}

return activity;

ActivityCorrelation

Description

This rule is used to correlate the activity record to a user in IdentityIQ; in other words, this rule associates the

activity record to the Identity who performed the activity.

Definition and Storage Location

The ActivityCorrelation rule is defined in the UI within the application definition.

Applications -> Application Definition -> Create new or select existing application -> Activity Data

Sources -> New Activity Data Source (or edit existing) -> Correlation Rule

The rule is referenced as the CorrelationRule in the ActivityDataSource XML.

<CorrelationRule>

 <Reference class="sailpoint.object.Rule" id="402846023a65e596013a65e7860704d6"

name="Example Activity Correlation Rule"/>

</CorrelationRule>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

application sailpoint.object.Application Reference to the application on which
the activity occurred

datasource sailpoint.object.ActivityDataSource Reference to the datasource from
which the activity was collected

activity sailpoint.object.ApplicationActivity Reference to the ApplicationActivity
object representing the collected
activity record

Outputs:

Rules in IdentityIQ Page 150 of 170

Argument Type Purpose
result java.util.Map

or
sailpoint.object.Link

A map that provides identifying information from which
IdentityIQ can select the appropriate link and ultimately
the appropriate Identity. The map will contain any of
these key/value sets:

Key/Values for correlating to a Link:

• “linkIdentity”, nativeIdentity value or

• “linkDisplayName”, displayName value or

• “linkAttributeName”, identifying Link attribute and
“linkAttributeValue”, Link attribute value
NOTE: When correlating to a link through the map
attributes, if the link is on an application defined with
instances, a “linkInstance” attribute specifying the
instance name should also be included in the map

Key/Values for correlating to an Identity:

• “identityAttributeName”, identifying Identity
attribute for the Identity and

“identityAttributeValue”, Identity attribute value

• “identityName”, Identity name

• “identity”, Identity object

Alternatively the rule can return a Link object.

Example

This ActivityCorrelation rule indicates that the name in the activity object’s “user” attribute matches to the

samAccountName attribute on the link to which the activity should be correlated.

import sailpoint.object.ApplicationActivity;

String user = activity.getUser();

Map returnMap = new HashMap();

if (user != null) {

 returnMap.put("linkAttributeName", "samAccountName");

 returnMap.put("linkAttributeValue", user);

}

return returnMap;

ActivityPositionBuilder

Description

The ActivityPositionBuilder rule applies only to JDBC Activity Collectors. It runs at the end of the activity-data-

gathering process and uses the current position in the activity collector resultSet to build a Map<String,String>

that can be saved to the SailPoint database. This map will be retrieved and passed to the

ActivityConditionBuilder rule to build the where clause in the next incremental call to this collector. These two

Rules in IdentityIQ Page 151 of 170

rules, together, function as a placeholder for activity collection to identify which records in the datasource have

already been collected by IdentityIQ and which still need to be read.

Definition and Storage Location

The ActivityPositionBuilder rule can be associated to an application on the Activity Data Sources tab within the

application definition. There is no rule editor available on this page, however, so the rule must be written in

XML and imported into IdentityIQ.

Applications -> Application Definition -> Create new or select existing application -> Activity Data

Sources -> New activity data source (or edit existing) -> Activity Data Source Type: JDBC Collector ->

Query Settings -> Position Builder.

The rule name is recorded as the value for the positionConfigBuilderRule in the attributes map of the

ActivityDataSource XML.

<entry key="positionConfigBuilderRule" value="[ActivityPositionBuilder Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

row java.sql.ResultSet Current position in the result set

Outputs:

Argument Type Purpose

returnMap java.util.Map Map that can be used to build the where clause for the
next call to the activity collector

Example

This example rule gets the timestamp for the request from the resultSet and records it in the returnMap. When

this map is fed into the ActivityConditionBuilder rule in the next activity collection, only activity that has

occurred after that date-time will be collected.

import java.util.Map;

import java.util.HashMap;

Map returnMap = new HashMap();

String lastTimeStamp = row.getString("REQUEST_TIME");

returnMap.put("lastTimeStamp", lastTimeStamp);

return returnMap;

Rules in IdentityIQ Page 152 of 170

ActivityConditionBuilder

Description

The ActivityConditionBuilder rule works in conjunction with the ActivityPositionBuilder rule, as described above.

It, too, only applies to JDBC Activity Collectors. It uses the map created by the ActivityPositionBuilder rule to

build the where clause for retrieving the next set of activity data from the data source.

This rule is only applied if the sql statement that defines where and how activity data is read includes a

reference variable $(positionCondition). The ActivityConditionBuilder rule specifies the condition that is

substituted for that variable.

Definition and Storage Location

The ActivityConditionBuilder rule can be associated to an application on the Activity Data Sources tab within the

application definition. There is no rule editor available on this page, however, so the rule must be written in

XML and imported into IdentityIQ.

Applications -> Application Definition -> Create new or select existing application -> Activity Data

Sources -> New activity data source (or edit existing) -> Activity Data Source Type: JDBC Collector ->

Query Settings -> Condition Builder.

… Query Settings -> SQL Statement example: Select * from activity where $(positionCondition)

The rule name is recorded as the value for the conditionBuilderRule in the attributes map of the

ActivityDataSource XML.

 <entry key="conditionBuilderRule" value="[ActivityConditionBuilder Rule Name]"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

config java.util.Map Map of values that can be used to identify where in the
datasource the collector should resume activity collection

Outputs:

Argument Type Purpose

condition string String value for where clause in activity lookup

Example

This example activityConditionBuilder rule uses the lastTimeStamp value recorded in the config map (by the

ActivityPositionBuilder rule) to determine the earliest request date to retrieve from the activity source to update

activity data in IdentityIQ.

String condition = "";

Rules in IdentityIQ Page 153 of 170

String lastTimeStamp = (String)config.get("lastTimeStamp");

if (lastTimeStamp != null)

 condition = "REQUEST_TIME > '" + lastTimeStamp + "'";

return condition;

Report Rules

This section describes rules that relate to running or configuring reports in IdentityIQ.

ReportCustomizer

Description

A ReportCustomizer rule runs during report-UI rendering to create a dynamically-built form for report-filter

specification. Out of the box, many of SailPoint’s out of the box reports allow filtering based on any editable

identity attribute, including extended attributes. Since extended attributes are customer-defined, the form for

specifying these attributes as filters necessarily cannot be shipped complete and therefore must be built

dynamically.

Definition and Storage Location

The rule is specified in the report’s TaskDefinition XML as part of the LiveReport definition.

<LiveReport>

…

 <InitializationRule>

 <Reference class="sailpoint.object.Rule" name="Identity Report Form Customizer"/>

 </InitializationRule>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose
taskDefinitio
n

sailpoint.object.TaskDefinition Reference to the taskDefinition object that contains
the report definition

report sailpoint.object.LiveReport The report definition itself

locale java.util.Locale Represents a specific geographical, political, or

cultural region; used for locale-specific

rendering/calculations (e.g. number formatting)

Outputs: None; the rule’s logic is should directly perform the necessary updates to objects; in the out of the box

examples, the rules add attributes for the ReportingLibrary class to use in rendering the filter form.

NOTE: The signature of this rule in the rules that ship with IdentityIQ indicates that it returns a Map, but that is

not so. No returned value from this rule will be processed.

Rules in IdentityIQ Page 154 of 170

Example

This example rule is the Identity Report Form Customizer rule that ships with the product and runs as part of

initialization of several of the out of the box reports. It adds all searchable attributes to the ReportingLibrary for

use in rendering the report filter form.

import sailpoint.object.*;

import sailpoint.reporting.ReportingLibrary;

ObjectConfig identityConfig = ObjectConfig.getObjectConfig(Identity.class);

List standardAttributes = new ArrayList();

standardAttributes.add(identityConfig.getObjectAttributeMap().get("firstname"));

standardAttributes.add(identityConfig.getObjectAttributeMap().get("lastname"));

standardAttributes.add(identityConfig.getObjectAttributeMap().get("displayName"));

standardAttributes.add(identityConfig.getObjectAttributeMap().get("email"));

standardAttributes.add(identityConfig.getObjectAttributeMap().get("manager"));

standardAttributes.add(identityConfig.getObjectAttributeMap().get("inactive"));

ReportingLibrary.addAttributes(context, report, IdentityEntitlement.class,

standardAttributes, "identity","Identity Attributes", locale, "id");

List extendedAttrs = new ArrayList();

for(ObjectAttribute att : identityConfig.getSearchableAttributes()){

 if (!att.isStandard())

 extendedAttrs.add(att);

}

for(ObjectAttribute att : identityConfig.getMultiAttributeList()){

 extendedAttrs.add(att);

}

ReportingLibrary.addAttributes(context, report, IdentityEntitlement.class,

extendedAttrs, "identity","Identity Extended Attributes", locale, "id");

ReportValidation

Description

A ReportValidation rule is used to perform report-specific form validation in case where the single field

validation option available in forms does not meet the needs of the report. This can be specified as a rule

(ValidationRule) or as a script (ValidationScript) embedded within the LiveReport definition.

Definition and Storage Location

The rule is specified in the report’s TaskDefinition XML as part of the LiveReport definition.

<LiveReport>

…

 <ValidationRule>

 <Reference class="sailpoint.object.Rule" name="Report Validation Rule Name"/>

 </ValidationRule>

…

Rules in IdentityIQ Page 155 of 170

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

report sailpoint.object.LiveReport Report definition being validated
form sailpoint.object.Form Form for rendering parameter UI, requiring

validation of user input

locale java.util.Locale Represents a specific geographical, political, or

cultural region; used for locale-specific

rendering/calculations (e.g. number formatting)

Output:

Argument Type Purpose
errors List<Message> Returns a List of messages indicating

where/why validation has failed; list should be
returned as null or empty if the form entries
pass validation

Example

This example validation rule checks that an email file format is specified when email recipients are specified for

the report. This validation rule could actually be specified as a field validation rule on the file format field or as a

validation rule on the report itself. In general, a report-level ValidationRule will only be used when the form

definition cannot achieve the required result.

import java.util.*;

import sailpoint.tools.Util;

import sailpoint.web.messages.MessageKeys;

List errors = null;

List emailRecips = form.getField("emailIdentities").getValue();

List fileTypes = form.getField("emailFileFormat").getValue();

if (!Util.isEmpty(emailRecips) && Util.isEmpty(fileTypes)){

 errors = new ArrayList();

 errors.add(MessageKeys.REPT_FORM_ERR_NO_EMAIL_FORMAT);

}

return errors;

ReportParameterQuery

Description

A ReportParameterQuery rule is used to specify any custom filter for the report and add it into the queryOptions

object that is used in the datasource filter. This is an alternative to a QueryScript (embedded within the report

definition). Parameters using a QueryRule do not need to specify a property because the queryRule overrides

Rules in IdentityIQ Page 156 of 170

any property on the parameter; the argument specified on the parameter can be accessed within the rule

through the “value” variable.

Definition and Storage Location

The rule is specified in the report’s TaskDefinition XML as part of a parameter definition in the LiveReport.

<Parameter argument="groupDefinitions">

 <QueryRule>

 <Reference class="sailpoint.object.Rule" name="Group Query Rule"/>

 </QueryRule>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

value java.lang.Object Parameter value, as specified in report form

arguments sailpoint.object.Attributes Report arguments map

queryOptions sailpoint.object.QueryOptions Current QueryOptions object for report filter

Output:

Argument Type Purpose

queryOptions sailpoint.object.QueryOptions Updated QueryOptions object to use as
report filter

Example

Group and populations are stored in groupDefinitions objects as a filter, so this example shows how a group or

population selected as a report parameter can be built into the datasource filter. This example comes from a

QueryScript in the Identity Forwarding Report, but extracting that script into a rule object would turn this into a

QueryRule.

import sailpoint.object.*;

import sailpoint.reporting.*;

Filter f = ReportingLibrary.getGroupDefinitionFilter(context, value, false);

if (f != null) {

 queryOptions.addFilter(f);

}

return queryOptions;

ReportParameterValue

Description

A ReportParameterValue rule is processed as “property = return value from ValueRule”. It performs processing

based on the argument’s value to return a different value that should be used in the criterion. In a ValueRule,

Rules in IdentityIQ Page 157 of 170

the argument is accessed through the variable name “value”. This is an alternative to a ValueScript embedded

within the report definition.

Definition and Storage Location

The rule is specified in the report’s TaskDefinition XML as part of the LiveReport definition.

<Parameter argument="applications" property="parent.application">

 <ValueRule>

 <Reference class="sailpoint.object.Rule" name="App Value Rule"/>

 </ValueRule>

</Parameter>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

value java.lang.Object Parameter value, as specified in report form

arguments sailpoint.object.Attributes Report arguments map

Output:

Argument Type Purpose

result java.lang.Object Value or list of values to use in query with the
specified parameter

Example

This example rule retrieves the application name that corresponds to the applicationID in the “application”

report argument. This would be the App Value Rule referenced in the example Definition and Storage Location

above.

 import sailpoint.object.*;

 import sailpoint.api.ObjectUtil;

 if (value != null){

 return ObjectUtil.convertIdsToNames(context, Application.class, value);

 }

 return null;

Miscellaneous Rules

This section is a catch-all grouping for rules that do not fall into any of the other rule categories discussed in this

document.

Rules in IdentityIQ Page 158 of 170

RiskScore

Description

When risk is associated with specific Identity attributes, custom risk score components can be created to reflect

that risk in the identity risk scores. Scoring for these Identity-attribute-based components can either be based

on a score assigned to a particular Identity attribute value or be calculated through a RiskScore rule. The

resultant score is factored into the identity risk score based on the “weight” assigned to the component in the

composite score for the Identity.

Definition and Storage Location

The custom risk score component must be added to the ScoreConfig XML as a new ScoreDefinition element

within the <IdentityScores> element; this is how it is added into the identity risk score computation. Depending

on how it is specified, there may or may not be a UI component for specifying scorer details. To specify it

without creating an interface window, record the ScoreDefinition like this:

<ScoreDefinition component="true" displayName="Accounting User Risk Score"

name="acctUser" scorer="sailpoint.score.IdentityAttributeScorer"

shortName="AccountingUser" weight="10">

 <Attributes>

 <Map>

 <entry key="rule" value="Accounting Risk Score Rule"/>

 </Map>

 </Attributes>

</ScoreDefinition>

This adds Accounting User Risk Score to the Composite Scoring page for Identity Risk Score (visible via Identities

-> Identity Risk Model -> Composite Scoring) and allows its score weight to be adjusted through the UI but does

not allow the rule to be changed or any other basis for score calculation to be specified through the UI. To

expose those additional configuration options in the UI, the ScoreDefinition must include a configPage

(gotoCustomScorePage is the default configuration page provided with IdentityIQ), a set of input arguments in a

signature element (determines the fields displayed on the default configuration page), and an attributes map

(prepopulates fields with values).

<ScoreDefinition component="true" configPage="gotoCustomScorePage"

displayName="Inactive User Score" name="inactiveUser"

scorer="sailpoint.score.IdentityAttributeScorer" shortName="Inactive" weight="25">

 <Attributes>

 <Map>

 <entry key="attribute" value="inactive"/>

 <entry key="score" value="500"/>

 <entry key="value" value="true"/>

 <entry key="rule" value="Inactive User Scoring Rule"/>

 </Map>

 </Attributes>

 <Description>This is a custom scorer. It looks for inactive users, and if an

identity is found to be inactive we assign the risk score specified for this score

component. If a rule is specified, the attribute-score-value combination will be

ignored in favor of the rule. </Description>

 <Signature>

 <Inputs>

 <Argument helpKey="help_risk_custom_attribute" name="attribute" type="string">

 <Prompt>Attribute name:</Prompt>

Rules in IdentityIQ Page 159 of 170

 </Argument>

 <Argument helpKey="help_risk_custom_value" name="value" type="string">

 <Prompt>Attribute value:</Prompt>

 </Argument>

 <Argument helpKey="help_risk_custom_score" name="score" type="int">

 <Prompt>Risk Score:</Prompt>

 </Argument>

 <Argument helpKey="Rule to control scoring" name="rule" type="string">

 <Prompt>Scorer Rule:</Prompt>

 </Argument>

 </Inputs>

 </Signature>

</ScoreDefinition>

As before, the weight assigned to this component in the composite score is still modifiable in the UI on the

Composite Score page. When specified this way, the rule name can be modified from the UI within the Identity

risk model definition.

Identities -> Identity Risk Model -> Composite Scoring -> click the scoring component name

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

identity sailpoint.object.Identity Reference to the Identity being scored

Outputs:

Argument Type Purpose

score Integer or string Value of the risk score to assign for the Identity Attribute
score

Example

This example RiskScore rule assigns a 500 score for this identity attribute component score to any Identity who

works in the Accounting or Finance department.

if ("Accounting".equals(identity.getAttribute(“department”) ||

 "Finance".equals(identity.getAttribute(“department”)) {

 return 500;

}

return 0;

RequestObjectSelector

Description

The RequestObjectSelector rule specifies a filter that is used in determining the objects that a given user can

request for the population of users over which he has request authority in the Lifecycle Manager component of

Rules in IdentityIQ Page 160 of 170

IdentityIQ. These are specified as the “Object Request Authority” rules that determine the list of Roles,

Applications, and Managed Entitlements visible to a user in the LCM access request windows.

The scopeService class offers convenience methods for creating QueryOptions objects that filter the object lists

by matching an Identity’s assigned scope or controlled scopes. These are accessible by to rules that import the

sailpoint.api.ScopeService class. The methods are:

QueryInfo getAssignedScopeQueryInfo(Identity)

QueryInfo getControlledScopesQueryInfo(Identity)

Definition and Storage Location

RequestObjectSelector rules can be selected and specified through the Lifecycle Manager Configuration page in

System Setup.

System Setup -> Lifecycle Manager Configuration -> Object Request Authority section under any of the

four request categories (Self Service, Managers, Help Desk, All Users) -> Roles, Applications, or Managed

Entitlements

The rules are recorded in the System Configuration XML in an attributes map belonging to one of these entries

(entry designates the request category to which the object request authority rules apply):

<entry key="selfServiceRequestControls">

<entry key="managerRequestControls">

<entry key="helpDeskRequestControls">

<entry key="generalPopulationRequestControls">

They are noted by rule ID, rather than rule name, and appear like this:

<entry key="helpDeskRequestControls">

 <value>

 <Map>

 …

 <entry key="applicationSelectorRule" value="402846023a65e596013a65e5d4ae0133"/>

 <entry key="managedAttributeSelectorRule"

value="402846023a65e596013a65e5d6b10137"/>

 <entry key="roleSelectorRule" value="402846023a65e596013a65e5d4ae0133"/>

 </Map>

 </value>

</entry>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

requestor sailpoint.object.Identity Identity object for the user who is making LCM
access requests

requestee sailpoint.object.Identity Identity object representing the user on whose
behalf the request is being made (the person to
whom the requested access will be granted); only
applicable when the request is being processed for a
single user; null when multiple users are specified

Rules in IdentityIQ Page 161 of 170

Outputs:

Argument Type Purpose

filter sailpoint.object.QueryInfo The QueryInfo object containing the filter to be
applied to the object list

NOTE: Older versions of this rule may return a Filter object instead of a QueryInfo object and IdentityIQ can

handle this return value. In some cases, multiple object request authority rules may apply to a given user (e.g. if

one rule is set for Managers and another for Help Desk and the Identity in question falls into both categories).

By default, all of these filters are or’d together so the least restrictive gets applied, but a null filter would just be

ignored. By returning a QueryInfo object, the rule can specify that when the filter is null, the Identity should be

able to see all objects of the given type, regardless of any other applicable filters – in effect, overriding any other

filters. Returning a Filter object does not permit this option.

Example

This example RequestObjectSelector rule returns a filter that restricts the set of objects to those with the same

scope as the requestee’s assigned scope. It further restricts the set of objects to those with the custom attribute

“requestable” set to true.

import sailpoint.api.ScopeService;

import sailpoint.object.Identity;

import sailpoint.object.Scope;

import sailpoint.object.QueryOptions;

import sailpoint.object.QueryInfo;

import sailpoint.object.Filter;

ScopeService scopeService = new ScopeService(context);

QueryInfo scopeQueryInfo;

if (requestee == null) {

 scopeQueryInfo = new QueryInfo(new QueryOptions());

} else {

 scopeQueryInfo = scopeService.getAssignedScopeQueryInfo(requestee);

}

Filter requestable = Filter.eq("requestable",true);

Filter assignedScope = scopeQueryInfo.getFilter();

Filter f = Filter.and(requestable, assignedScope);

QueryInfo finalQueryInfo = new QueryInfo(f, false);

return finalQueryInfo;

This example RequestObjectSelector rule gives the Identity access to all objects of the applicable type,

regardless of any other request authority filters that might apply to the user. For example, if all Managers have

access to all Roles and a user falls under the Manager and Help Desk categories, this rule, if connected to the

Managers object request authority settings for LCM, forces an override of whatever Help Desk filters would be

applied and grants the user access to all Roles.

import sailpoint.object.QueryInfo;

QueryInfo scopeQueryInfo = new QueryInfo(null,false);

Rules in IdentityIQ Page 162 of 170

return scopeQueryInfo;

TaskEventRule

Description

The TaskEventRule is a rule type created in IdentityIQ 6.0. It is used to inject logic at a particular stage in the

Task execution process; currently the only stage supported is task completion. This rule type was created to

allow reporting tasks to notify the requesting user when the report has been completed. When the user clicks

Email Me When Done on the Task Result, a TaskEvent is created with an attached TaskEventRule that sends an

email message to the requester when the task reaches the completion stage.

NOTE: Because custom tasks do not modify the Task Result UI and TaskEvents can only be created with a

connection to an in-progress TaskResult, this rule type is not currently useful for custom coding.

Definition and Storage Location

At present, there is a single TaskEventRule active in IdentityIQ and it is connected to a TaskEvent when that

event is created by the IdentityIQ reporting API. The TaskEventRule name is hard-coded there and there is no UI

option for creating any other type of TaskEvent or TaskEventRule.

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

taskResult sailpoint.object.TaskResult Reference to the current taskResult object from
the task execution

event sailpoint.object.TaskEvent TaskEvent object to which the rule is connected

Outputs:

Argument Type Purpose
newTaskResult java.util.Map Contains key “taskResult” and a taskResult object modified

by the rule (or null if no update to taskResult is required as
a result of the rule’s execution)

Example

This is the TaskEventRule defined in IdentityIQ 6.0+ to send an email to a report requester when the report task

reaches the Completion stage.

import sailpoint.object.*;

import java.util.*;

String identity = (String)event.getAttribute(TaskEvent.ATTR_EMAIL_RECIP);

if (identity != null){

Rules in IdentityIQ Page 163 of 170

 Identity identity = context.getObjectByName(Identity.class, identity);

 if (identity == null)

 return result;

 List emailAddresses = new ArrayList();

 emailAddresses.add(identity.getEmail());

 EmailOptions options = new EmailOptions(emailAddresses, null);

 options.setSendImmediate(true);

 Map emailVars = new HashMap();

 emailVars.put("reportName", taskResult.getName());

 options.setVariables(emailVars);

 String templateName =

(String)context.getConfiguration().get(Configuration.REPORT_COMPLETION_EMAIL_TEMPLATE)

;

 EmailTemplate et = context.getObjectByName(EmailTemplate.class, templateName);

 context.sendEmailNotification(et, options);

}

return null;

TaskCompletion

Description

The TaskCompletion rule is a rule type created in IdentityIQ 6.3 to support sending an email message to a

specified recipient when task execution completes (either in all cases or with an error condition or a warning

condition). Task notification is a new feature in version 6.3, and the logic for handling the notification resides in

the Task Completion rule specified for the installation. A default rule, called Task Completion Email Rule, ships

with the product and contains all the logic necessary to send an email to the recipient designated in the UI, using

the email template specified in the UI. Task completion notification can be configured at the task level or at the

system level; the task-level configuration takes precedence over the system-level configuration.

NOTE: Many customers will never change this rule or create another rule of this type. Only one can be used in

each installation, and the provided rule contains the logic most customers will want to use to manage task

completion notifications.

Definition and Storage Location

The rule to run on task completion is specified in the SystemConfiguration XML as the taskCompletionRule. This

is an XML-only configuration (no UI component).

<entry key="taskCompletionRule" value="Task Completion Email Rule"/>

Arguments

Inputs (in addition to the common arguments):

Argument Type Purpose

result sailpoint.object.TaskResult Reference to the taskResult object from the
current task execution

Rules in IdentityIQ Page 164 of 170

Outputs: None; the rule’s logic is intended to send an email notification and return nothing to the system.

Example

The source for the default TaskCompletion rule is included below. That rule contains a main section of code (at

the bottom) which executes other methods also defined within the rule source. It determines whether email

notification has been configured for the task (for the type of result returned: success, failure, or warning) and, if

so, sends an email message to the chosen recipient using the chosen email template.

import java.util.*;

import sailpoint.tools.Util;

import sailpoint.tools.GeneralException;

import sailpoint.object.Configuration;

import sailpoint.object.EmailOptions;

import sailpoint.object.EmailTemplate;

import sailpoint.object.TaskResult;

import sailpoint.object.Identity;

import sailpoint.object.TaskDefinition;

import sailpoint.api.MessageRepository;

import sailpoint.api.Emailer;

import sailpoint.api.BasicMessageRepository;

import sailpoint.api.ObjectUtil;

import sailpoint.api.SailPointContext;

public Boolean sendEmailNotify = false;

public Boolean taskLevelEnabled = false;

public Boolean systemLevelEnabled = false;

MessageRepository _errorHandler;

/**

* Method to send email

*/

private void sendEmailOnTaskCompletion(String emailTemplate, ArrayList recipients,

TaskResult result, SailPointContext context) {

 String message = "";

 String status = "";

 TaskDefinition def;

 Configuration sysConfig;

 def = result.getDefinition();

 EmailTemplate notifyEmail = context.getObjectByName(EmailTemplate.class,

emailTemplate);

 if (null == notifyEmail) {

 log.error ("From Task Completion Email Rule: ERROR: could not find email

template [" + emailTemplate + "]");

 return;

 }

 notifyEmail = (EmailTemplate) notifyEmail.deepCopy(context);

 if (null == notifyEmail) {

 log.error ("From Task Completion Email Rule: ERROR: failed to deepCopy template

[" + emailTemplate + "]");

 return;

 }

 // For now, we'll just use a map with a few pre-selected properties.

 Map mArgs = new HashMap();

 mArgs.put("taskResult", result);

 mArgs.put("taskName", def.getName());

 mArgs.put("taskDesc", def.getDescription());

 if (result.isError()) {

 status = "Error";

Rules in IdentityIQ Page 165 of 170

 }

 else if (result.isWarning()) {

 status = "Warning";

 }

 else if (result.isSuccess()) {

 status = "Success";

 }

 mArgs.put("taskStartTime", result.getLaunched());

 mArgs.put("taskEndTime", result.getCompleted());

 mArgs.put("status", status);

 if (result.getMessages() != null) {

 mArgs.put("message", result.getMessages());

 }

 mArgs.put ("resultId", result.getId());

 EmailOptions ops = new EmailOptions(recipients, mArgs);

 new Emailer(context, _errorHandler).sendEmailNotification(notifyEmail , ops);

}

private Boolean isEmailNotificationEnabled(TaskResult result, SailPointContext

context) {

 String notifyStr = null;

 Boolean sendEmail = false;

 TaskDefinition def;

 Configuration sysConfig;

 def = result.getDefinition();

 notifyStr = (String) def.getArgument (Configuration.ATT_EMAIL_NOTIFY);

 // if it is disabled at Task level, chk for system level settings

 if (notifyStr == null || (notifyStr.equals("Disabled"))) {

 sysConfig = context.getConfiguration();

 notifyStr = sysConfig.getString(Configuration.ATT_EMAIL_NOTIFY);

 if (notifyStr == null || (notifyStr.equals("Disabled"))) {

 sendEmail = false;

 return (sendEmail);

 }

 else {

 systemLevelEnabled = true;

 }

 }

 else

 {

 taskLevelEnabled = true;

 }

 if (notifyStr.equals("Always")) {

 sendEmail = true;

 }

 if(((notifyStr.equals("Failure")) && result.isError() == true) ||

 ((notifyStr.equals("Warning")) && result.isWarning() == true

&& result.isError() == false)) {

 sendEmail = true;

 }

 return (sendEmail);

}

private List getEmailAddress (String identityName, SailPointContext context) {

 Identity identity = context.getObjectByName(Identity.class, identityName);

 if (identity != null)

 {

Rules in IdentityIQ Page 166 of 170

 List addresses = ObjectUtil.getEffectiveEmails(context, identity);

 if (!Util.isEmpty(addresses)) {

 return(addresses);

 }

 else

 {

 if(log.isWarnEnabled()) {

 log.warn("From Task Completion Email Rule: Missing Email Address for

Email Recipient: " + identityName);

 }

 }

 }

 return (null);

}

private ArrayList getEmailRecipient (Object identityNames, SailPointContext context) {

 List recipients;

 String val = null;

 StringTokenizer st = null;

 if (identityNames != null) {

 recipients = new ArrayList ();

 // From Task definition, single identity

 if (identityNames instanceof String && !identityNames.contains(","))

{

 List addresses = getEmailAddress (identityNames.toString(), context);

 if (addresses != null) {

 recipients.addAll (addresses);

 }

 }

 // From Task definition, multiple identities

 else if (identityNames instanceof String &&

identityNames.contains(",") == true) {

 List nameList = Util.csvToList(identityNames);

 for (String identityName : nameList) {

 List addresses = getEmailAddress (identityName, context);

 if (addresses != null) {

 recipients.addAll (addresses);

 }

 }

 }

 // From system configuration single or multiple identities it comes as list

 else if (identityNames instanceof List) {

 for (String identityName : identityNames) {

 List addresses = getEmailAddress (identityName, context);

 if (addresses != null) {

 recipients.addAll(getEmailAddress (identityName, context));

 }

 }

 }

 }

 return (recipients);

}

// Main

String emailTemplate = "";

TaskDefinition def;

Configuration sysConfig;

Object identityNames;

sendEmailNotify = isEmailNotificationEnabled (result, context);

if (sendEmailNotify) {

 _errorHandler = new BasicMessageRepository();

 if (taskLevelEnabled) {

Rules in IdentityIQ Page 167 of 170

 //take template and recipient from task level settings

 def = result.getDefinition();

 Map mArgs = def.getEffectiveArguments();

 identityNames = mArgs.get(Configuration.ATT_IDENTITIES);

 emailTemplate = mArgs.get(Configuration.ATT_EMAIL_TEMPLATE);

 }

 else if (systemLevelEnabled) {

 //take template and recipient from system level settings

 sysConfig = context.getConfiguration();

 emailTemplate = sysConfig.getString(Configuration.ATT_EMAIL_TEMPLATE);

 identityNames = sysConfig.get(Configuration.ATT_IDENTITIES);

 }

 List recipients = getEmailRecipient(identityNames,context);

 if (recipients != null && !Util.isEmpty(recipients)) {

 // Send Email

 sendEmailOnTaskCompletion(emailTemplate, recipients, result, context);

 }

 else {

 if(log.isWarnEnabled()) {

 log.warn("From Task Completion Email Rule: Cannot send task completion email

Notification. Reason : Missing Email Address for Email Recipients");

 }

 }

}

Rules in IdentityIQ Page 168 of 170

Non-Standard Rules

There are two additional sets of items that are stored in IdentityIQ as Rule objects but are not traditional rules

as described in this document. These are rule libraries and Before and After Scripts for direct connectors.

Rule Libraries

Rule libraries are collections of methods that have been grouped together and stored in IdentityIQ as a Rule

object. They contain sets of related but unconnected methods that can be invoked directly by workflow steps or

other rules. These are stored as Rule objects, rather than in the compiled Java classes, so that their functionality

can be easily modified to suit the needs of each installation.

IdentityIQ ships with a few rule libraries that are used by the default workflows. Examples of rule libraries are

Workflow Library, Approval Library, and LCM Workflow Library, any of which can be viewed through the debug

pages or the IIQ console. Customers can create their own custom libraries to provide additional functionality as

needed.

To reference a rule library from another rule, include a <ReferencedRules> element in the rule XML, naming the

rule library in the <Reference>. The methods within the library can then be invoked from within the rule’s

Source element.

<Rule…>
 <ReferencedRules>
 <Reference class='Rule' name='My Library'/>
 </ReferencedRules>
 <Source>
 doSomething(); //invokes the doSomething method in My Library
 </Source>
</Rule>

Refer to the Workflows chapter of the IdentityIQ Administration Guide for details on how to reference Rule

Libraries in workflow steps.

Before/After Scripts

Before and After Scripts, also called Native Rules, are scripts that are sent through the connector to the

IQService host machine to run before and after provisioning. Before Scripts can modify the request object

(containing the provisioning request) and After Scripts can modify the result object (containing the provisioning

result); both can perform custom actions or manipulations on those objects. Scripts can be written in any

scripting language, including both object-oriented languages like PowerShell and non-object-oriented languages

like Perl.

Native Rules are recorded as Rule objects in IdentityIQ and are assigned a type value that determines their

usage.

Rules in IdentityIQ Page 169 of 170

• Before Script Rule Types: ConnectorBeforeCreate, ConnectorBeforeModify, ConnectorBeforeDelete

• After Script Rule Types: ConnectorAfterCreate, ConnectorAfterModify, ConnectorAfterDelete

The rule names are included in the attributes map of the Application XML for the application to which they

apply; they are listed within the “nativeRules” entry.

<entry key="nativeRules">

 <value>

 <List>

 <String>AfterCreate-Powershell</String>

 <String>BeforeCreate-Powershell</String>

 <String>BeforeModify-Batch</String>

 </List>

 </value>

</entry>

Refer to the IQService Before/After Scripts section (in the Appendix) of the Sailpoint IdentityIQ Direct Connector

Administration and Configuration Guide, which ships with IdentityIQ (versions 6.0+), for the complete

documentation on Native Rules.

Rules in IdentityIQ Page 170 of 170

Appendix A: Loading Rules

Rules can be loaded into IdentityIQ through the IIQ console or through the Import From File option in the Gear

menu -> Global Settings menu.

To import a rule from the console:

1. Launch the console by entering “iiq console” at a command prompt in the [IdentityIQ Install

Directory]\WEB-INF\bin directory. The “>” prompt indicates that the console is running.

C:\IdentityIQ\WEB-INF\bin> iiq console

>

2. Use the import command to import the xml file containing the rule or rules.

> import myrules.xml

3. The console lists all the objects in the file as they are imported.

> import myrules.xml

Rule:Test Rule 1

Rule:Test Rule 2

>

To import a rule through the UI:

1. Navigate to Gear menu -> Global Settings -> Import From File.

2. Click Browse…, select a filename from the file system, and click Open.

3. Click Import.

Figure 8: UI Import From File

	Rules Overview
	Creating Rules
	UI Rule Editor
	Importing Rule XML

	Common Rule Arguments
	Custom Log4J Logging in Rules
	Printing the Beanshell Namespace

	Managing Rule Arguments
	Rule Types
	Connector Rules
	PreIterate
	Description
	Definition and Storage Location
	Arguments
	Examples

	BuildMap
	Description
	Definition and Storage Location
	Arguments
	Example

	JDBCBuildMap
	Description
	Definition and Storage Location
	Arguments
	Example

	SAPBuildMap
	Description
	Definition and Storage Location
	Arguments
	Example

	SAPHRManagerRule
	Description
	Definition and Storage Location
	Arguments
	Example

	PeopleSoftHRMSBuildMap
	Description
	Definition and Storage Location
	Arguments
	Example

	FileParsingRule
	Description
	Definition and Storage Location
	Arguments
	Example

	MergeMaps
	Description
	Definition and Storage Location
	Arguments
	Example

	Transformation
	Description
	Definition and Storage Location
	Arguments
	Example

	PostIterate
	Description
	Definition and Storage Location
	Arguments
	Examples

	WebServiceBeforeOperationRule
	Description
	Definition and Storage Location
	Arguments
	Example

	WebServiceAfterOperationRule
	Description
	Definition and Storage Location
	Arguments
	Example

	RACFPermissionCustomization
	Description
	Definition and Storage Location
	Arguments

	Aggregation/Refresh Rules
	ResourceObjectCustomization
	Description
	Definition and Storage Location
	Arguments
	Example

	Correlation
	Description
	Definition and Storage Location
	Arguments
	Examples

	IdentityCreation
	Description
	Definition and Storage Location
	Arguments
	Example

	ManagerCorrelation
	Description
	Definition and Storage Location
	Arguments
	Example

	ManagedAttributeCustomization / ManagedAttributePromotion
	Description
	Definition and Storage Location
	Arguments
	Example

	Refresh
	Description
	Definition and Storage Location
	Arguments
	Example

	AccountGroupRefresh/GroupAggregationRefresh
	Description
	Definition and Storage Location
	Arguments
	Example

	AccountSelector
	Description
	Definition and Storage Location
	Arguments
	Example

	Certification Rules
	CertificationExclusion
	Description
	Definition and Storage Location
	Arguments
	Example

	CertificationPreDelegation
	Description
	Definition and Storage Location
	Arguments
	Example

	Certifier
	Description
	Definition and Storage Location
	Arguments
	Example

	CertificationEntityCustomization
	Description
	Definition and Storage Location
	Arguments
	Example

	CertificationItemCustomization
	Description
	Definition and Storage Location
	Arguments
	Example

	CertificationPhaseChange
	Description
	Definition and Storage Location
	Arguments
	Example

	CertificationEntityRefresh
	Description
	Definition and Storage Location
	Arguments
	Example

	CertificationEntityCompletion
	Description
	Definition and Storage Location
	Arguments
	Example

	CertificationItemCompletion
	Description
	Definition and Storage Location
	Arguments
	Example

	CertificationAutomaticClosing
	Description
	Definition and Storage Location
	Arguments
	Example

	CertificationSignOffApprover
	Description
	Definition and Storage Location
	Arguments
	Example

	IdentityTrigger
	Description
	Definition and Storage Location
	Arguments
	Example

	IdentitySelector
	Description
	Definition and Storage Location
	Arguments
	Example

	Provisioning Rules
	BeforeProvisioning
	Description
	Definition and Storage Location
	Arguments
	Example

	AfterProvisioning
	Description
	Definition and Storage Location
	Arguments
	Example

	JDBCProvision
	Description
	Definition and Storage Location
	Arguments
	Example

	JDBCOperationProvisioning
	Description
	Definition and Storage Location
	Arguments
	Example

	SapHrProvision
	Description
	Definition and Storage Location
	Arguments
	Example

	SapHrOperationProvisioning
	Description
	Definition and Storage Location
	Arguments
	Example

	PeopleSoftHRMSProvision
	Description
	Definition and Storage Location
	Arguments
	Example

	PeopleSoftHRMSOperationProvisioning
	Description
	Definition and Storage Location
	Arguments
	Example

	Integration
	Description
	Definition and Storage Location
	Arguments
	Example

	Notification/Assignment Rules
	EmailRecipient
	Description
	Definition and Storage Location
	Arguments
	Example

	Escalation
	Description
	Definition and Storage Location
	Arguments
	Examples

	Approver
	Description

	ApprovalAssignment
	Description
	Definition and Storage Location
	Arguments
	Example

	FallbackWorkItemForward
	Description
	Definition and Storage Location
	Arguments
	Example

	WorkItemForward
	Description
	Definition and Storage Location
	Arguments
	Example

	Owner Rules
	Owner
	Policy Owner
	GroupOwner
	Description
	Definition and Storage Location
	Arguments
	Example

	Scoping Rules
	ScopeCorrelation
	Description
	Definition and Storage Location
	Arguments
	Example

	ScopeSelection
	Description
	Definition and Storage Location
	Arguments
	Example

	Identity and Account Mapping Rules
	IdentityAttribute
	Description
	Definition and Storage Location
	Arguments
	Example

	IdentityAttributeTarget
	Description
	Definition and Storage Location
	Arguments
	Example

	Listener
	Description
	Definition and Storage Location
	Arguments
	Example

	LinkAttribute
	Description
	Definition and Storage Location
	Arguments
	Example

	Form/Provisioning Policy-related Rules
	FieldValue
	Description
	Definition and Storage Location
	Arguments
	Example

	AllowedValues
	Description
	Definition and Storage Location
	Arguments
	Example

	Validation
	Description
	Definition and Storage Location
	Arguments
	Example

	Owner
	Description
	Definition and Storage Location
	Arguments
	Example

	Workflow Rules
	Workflow
	Description
	Definition and Storage Location
	Arguments
	Example

	Policy/Violation Rules
	Policy
	Description
	Definition and Storage Location
	Arguments
	Example

	Violation
	Description
	Definition and Storage Location
	Arguments
	Example

	PolicyOwner
	Description
	Definition and Storage Location
	Arguments
	Example

	PolicyNotification
	Description
	Definition and Storage Location
	Arguments
	Example

	Login Configuration Rules
	SSOAuthentication
	Description
	Definition and Storage Location
	Arguments
	Example

	SSOValidation
	Description
	Definition and Storage Location
	Arguments
	Example

	SAMLCorrelation
	Definition and Storage Location
	Arguments
	Example

	IdentityCreation
	Description
	Definition and Storage Location
	Arguments and Example

	Logical Application Rules
	CompositeAccount
	Description
	Definition and Storage Location
	Arguments
	Example

	CompositeRemediation
	Description
	Definition and Storage Location
	Arguments
	Example

	CompositeTierCorrelation
	Description
	Definition and Storage Location
	Arguments
	Example

	Unstructured Targets Rules
	TargetCreation
	Description
	Definition and Storage Location
	Arguments
	Example

	TargetCorrelation
	Description
	Definition and Storage Location
	Arguments
	Example

	TargetRefresh
	Description
	Definition and Storage Location
	Arguments
	Example

	TargetTransformer
	Description
	Definition and Storage Location
	Arguments

	Alert Processing Rules
	AlertCreation
	Definition and Storage Location
	Arguments
	Example

	AlertCorrelation
	Definition and Storage Location
	Arguments
	Example

	AlertMatch
	Definition and Storage Location
	Arguments
	Example

	Activity Data Source Rules
	ActivityTransformer
	Description
	Definition and Storage Location
	Arguments
	Example

	ActivityCorrelation
	Description
	Definition and Storage Location
	Arguments
	Example

	ActivityPositionBuilder
	Description
	Definition and Storage Location
	Arguments
	Example

	ActivityConditionBuilder
	Description
	Definition and Storage Location
	Arguments
	Example

	Report Rules
	ReportCustomizer
	Description
	Definition and Storage Location
	Arguments
	Example

	ReportValidation
	Description
	Definition and Storage Location
	Arguments
	Example

	ReportParameterQuery
	Description
	Definition and Storage Location
	Arguments
	Example

	ReportParameterValue
	Description
	Definition and Storage Location
	Arguments
	Example

	Miscellaneous Rules
	RiskScore
	Description
	Definition and Storage Location
	Arguments
	Example

	RequestObjectSelector
	Description
	Definition and Storage Location
	Arguments
	Example

	TaskEventRule
	Description
	Definition and Storage Location
	Arguments
	Example

	TaskCompletion
	Description
	Definition and Storage Location
	Arguments
	Example

	Non-Standard Rules
	Rule Libraries
	Before/After Scripts
	Appendix A: Loading Rules

